STRATIFIED TRANSVERSALITY
VIA TIME-DEPENDENT VECTOR FIELDS
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ABSTRACT. For X a (w)-regular or (¢)-regular stratification, hence for any Whitney strati-
fication and, via regular embedding, for any abstract stratified set, we use time-dependent vector
fields to prove an extension theorem for diffeomorphisms near the indentity defined on strata of
a given dimension. Then we show that after isotopy a stratified map h : Z — X can be made
transverse to a fixed stratified map g : Y — X.

A .M.S. CLASSIFICATIONS: Primary 58A35, 57N75; Secondary 54C20, 57R52

1. Introduction. A substratified object of a stratified space X = (A4,%) is a
stratified space W = (W, %y ) such that W C A and each stratum of Xy is contained
in one and only one stratum of the stratification ¥ of X. We consider the problem of
putting a substratified object W | or a stratified map h : Z — X, in transverse position
with respect to a stratified map g: Y — X.

This problem was previously considered by Clint McCrory who solved it for strati-
fied polyhedra [13] giving a result essential to the foundation of intersection homology.
The problem was treated in the context of Whitney stratifications ((b)-regular) by Mark
Goresky, first in his thesis [7] and later in [8] (Transversality Lemma 5.3) with a com-
pletely revised formulation.

Goresky’s Transversality Lemma is for substratified objects W of X satisfying the
m-fibre condition and a stratified map g : Y — X which is controlled with respect to
two systems of control data. The m-fibre condition for W and the control condition for
g: Y — X are conditions implying that W is locally, near each point x of A, a union
of stratified fibres of a projection g : Ts — S (S stratum of X containing z) and a
similar geometric property for the fibres of g. These strong conditions were essential to
Goresky’s inductive sketch proof in order to preserve the transversality with respect to g
of a deformation W’ of W .

The utility of the transversality theorem of Goresky was proven already in various
significant applications : first it was the key result in proving the main theorems 3.4,
4.7 and 6.2 of [8] on representing homology and cohomology of a Whitney stratification
X by Whitney cycles and cocycles, then the first author of the present paper used it to
define a geometric sum operation in the Goresky sets WH*(X) and to give a geometric
construction of the Steenrod cohomology operations [15, 16]. On the other hand, the
hypotheses of w-fibre on W , and control on f, prevent more general applications.

In this article we prove a stratified transversality theorem for two stratified maps
h:Z — X and g: Y — X between abstract stratified sets or (w)-regular stratifications,
without assuming any control condition. Abstract stratified sets form a class containing
Whitney and (c)-regular stratifications; but not all (w)-regular stratifications.

The authors gave recently a different proof of this result [18]. The proof presented
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here gives more information and is based on a theorem of extension of stratified homeo-
morphisms and is in reality the original generalisation (see [17]).
The content of the paper is as follows.

In §2 we recall the definitions of stratified sets of Thom-Mather [5, 11, 12], (¢)-regular
stratifications, stratified and controlled maps, and stratified time-dependent vector fields.

In §3 we prove a stratified extension theorem (Theorem 3.1) which allows one to
extend globally on the whole of A diffeomorphisms given on the k-dimensional part S =
A — Ap_1 of A which extend continuously the identity on Ag_;. We initially state and
prove it for the (c)-regular stratifications of K. Bekka [1], and then generalize to a more
general stratified context (theorem 3.2). Recall that Whitney (b)-regular stratifications
are (c)-regular [1].

In order to prove theorems 3.1 and 3.2, we use certain time-dependent vector field
techniques introduced by Mather [10] (to show that infinitesimal stability implies stabil-
ity) in proving that “every diffeomorphism f :S — S in a small enough neighborhood of
1s in Diff(S,S) is the flow at time t = 1 of a time-dependent vector field” (such a flow
is not in general a one parameter group [4]).

Theorem 3.2 states that the stratified extension theorem holds for abstract stratified
sets [11, 12], and also for (w)-regular stratifications [26] (thus for Lipschitz stratifications
[21]).

In §4 we give the transversality theorem (theorem 4.8) : for every pair of stratified
maps g : Y — X and h : Z — X there exists a deformation by isotopy h’ of h in X
which is transverse to g. Theorem 4.8 holds for abstract stratified sets and for (w)-regular
stratifications.

We conclude the article by applying theorem 4.8 to deform, via a stratified isotopy
®; : X — X, a substratified object W of X to a substratified object W ' = &;(W )
transverse to a given map g : Y — X. We obtain thus Corollary 4.12 which generalizes
Goresky’s Transversality Lemma to abstract stratified sets which are not necessarily -
fibre and to stratified maps which are not necessarily controlled.

2. Stratified sets and maps. A C* stratification (1 < k < o0) of a topological
space A is a locally finite partition ¥ of A into C*¥ connected manifolds (the strata of X)
satisfying the frontier condition [11] : if X and Y are distinct strata such that X NY # 0,
then X C Y and we write X < Y. The pair X = (4,Y) is called a C* stratified space
with stratification X, and the union of the strata of dimension < k, the k-skeleton Ay,
induces a C* stratified space X, = (Ax, |4,)-

Extra conditions may be imposed on X, such as to be an abstract stratified set of
Thom-Mather [5, 11, 12] or, when A is a subset of a C* manifold, to satisfy conditions
(a) or (b) of Whitney [11, 12, 27], or (c) of Bekka [1] or, when A is a subset of a C?
manifold, to satisfy condition (w) of Kuo-Verdier [26] or (L) of Mostowski [21].

DEFINITION 2.1. Let X be a stratified space. A family F = {(7x, px,Tx)}xex is
called a system of control data for X if for each stratum X of X we have :

1) T'x is a neighbourhood of X in A (called a tubular neighbourhood of X);

2) mx : Tx — X is a continuous retraction of Tx onto X (called projection on X);

3) px :Tx—[0, 00 is continuous and X=p'(0) (px is the distance function from X)
and for every pair X <Y of strata, the restrictions mxy = 7x |7y, and pxy = px|1xy s
to Txy =Tx NY, satisfy :

5) (rxy, pxy) : Txy — X x]0,00[ is a smooth submersion (thus dim X < dimY’);

6) for every stratum Z such that Z > Y > X and for every z € Ty z N Txz one has :

i) Txymyz(z) = mxz(z) (the w-control condition)
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it) pxy Ty z(2) = pxz(z) (the p-control condition).
In what follows let T (€) = px ' ([0,¢€[),Ve > 0, and assume Tx = Tx(1).

If A is Hausdorff, locally compact and admits a countable basis for its topology, the
pair (X, F ) is called an abstract stratified set (since one works with a unique system of
control data of X, in what follows we omit F ).

If X is an abstract stratified set, the tubular neighbourhoods {T'x } xex; may be chosen
such that: “T'xy # 0 ifand only if X <Y or X >Y or X =Y (see [12]).

A stratified map f : X — X’ between stratified spaces X = (A,Y) and X' = (B,Y’) is
a continuous map f : A — B which sends each stratum X of X into a unique stratum X’
of X/, such that the restriction fx : X — X’ is smooth. Call f a stratified homeomorphism
if f is a global homeomorphism and each fx is a diffeomorphism.

Given f : X — X’ and two systems of control data F = {(Tx,7x,px)}xex and
F'={(Tx/,7mx/,px)}xes, fis called controlled (with respect to F andF')ifVX <Y,
Je > 0 such that for all y € T'xy () = T'x () N'Y we have :

mxy fy(y) = fxmxy (y) (the m-control condition for f)
pxy fy (y) = pxvy (y) (the p-control condition for f).

A stratified vector field on X is a family ¢ = {(x }xex of vector fields, with every (x
a smooth vector field on the stratum X. Similarly, a stratified vector field ( = {{x}xexn
is called (7, p)-controlled (with respect to F ) if the following two control conditions hold:

Txy«(Cy(y)) = Cx(mxy (y)) (the m-control condition for ()
pxy+(Cy(y)) =0 (the p-control condition for ).

The notion of system of control data of X, introduced by Mather in [12], is the
fundamental tool allowing one to obtain good extensions of vector fields.

PROPOSITION 2.2 ([5, 12]). Let X be a C? abstract stratified set, X a stratum of X.

For each C' wvector field (x on X there exists a stratified (m,p)-controlled lifting
(ry = {C{v}y>x defined on a tubular neighbourhood Tx of X. Moreover, if (x admits a
global flow {¢; : X — X}icRr, then (ry admits a global flow {¢ry + : Tx — Tx }icr, such
that each ¢r, 1 is a stratified, (m, p)-controlled homeomorphism.

DEFINITION 2.3. (K. Bekka 1990). A CF* stratified space (A,Y) with A C R", is
called (c)-regular if, for every stratum X € ¥, there exists an open neighbourhood Ux of
X in R" and a C' function px : Ux — [0, 00, such that py'(0) = X, and such that its
stratified restriction to the star of X :

px : Star(X)NUx — [0,00] is a Thom map,

where Star(X) = Uyex | y>xY and the stratification on Star(X)NUx is induced by X.

In substance, the (c)-regularity of Bekka means that for every pair of adjacent strata
X <Y, the tangent spaces at y € Y to the level hypersurfaces py'(€) (where € = px(y))
have limits which contain 7, X when y — = € X.

REMARK 2.4. A Bekka (c)-regular stratified space X = (4, X) admits a system of
control data {(7x, px,Tx)} xex in which for each stratum X € 3, Tx = UxNA, and 7y,
px are restrictions of C'*° maps defined on Ux [1]. Thus (c¢)-regular stratifications admit
a structure of abstract stratified set and so proposition 2.2. holds for them. We underline
moreover that in this case, for each vector field (x on a stratum X of A, the stratified

3



C. MUROLO, A.A.DU PLESSIS and D. J. A. TROTMAN

(m, p)-controlled lifting (7, = {¢y }v>x defined on a tubular neighbourhood T'x of X may
be chosen continuous [2] (this gives a more regular lifted flow {71y : Tx — T'x }er)-

Stratified time-dependent vector fields. Let S be a C* manifold, and let I = [0, 1] be
the closed unit interval. With notation as in [10] (page 286) and [23] (page 61), consider
the projection g : § x I — S onto the first factor.

Recall that the fibre bundle pullback (7§T'S,IIgxr, S x I) with base space S x I of
the tangent bundle T'S has for total space :

m5TS = {((z,t), (y,v)) € (SxI)xTS | z =y}
and so identifying each element ((x,t), (z,v)) € w§T'S with (x,v,t), one can rewrite as :
WETS = U(I,t)ESXI{(:But)} X TmS = TSxI.

The fibre of the projection Ilgy; : TS — S x I at a point (x,t) is 1S and so
the space of sections I'**(w§T'S) is exactly the space of C* level preserving vector fields
¢ = {Ct}ter defined on S x I.

DEFINITION 2.5. A level preserving vector field ¢ € I'*°(wT'S) is called a time-
dependent vector field on the manifold S. We will also denote ¢ by {(;}tes, thinking of it
as a smooth family of vector fields on S.

Consider a time-dependent vector field ( ={(;}+c; and the differential equation on S:

A global flow of ¢ = {(t}+ is a smooth map ¢ : S x I — S which is a solution of the
equation E((). We write also ¢ = {¢; : S — S}.

Mather showed (Lemma 2, page 289 of [10], or Lemma 3.7.5 in [23]) that every time-
dependent vector field ¢ = {(;}+ in a sufficiently small neighbourhood Og in I'**(7¢T'S)
of the zero (time-dependent) vector field 0 admits such a global flow.

Let X = (4,Y) be a C? abstract stratified set equipped with a system of control data
F ={(Tx,7x,px)}xes.

Fix a stratum X of A and a time-dependent vector field (x = {(x¢}+. For all t € I,
(x¢ is a vector field of X, so (by proposition 2.2) we can consider a (7, p)-controlled
lifting {1 + on the tubular neighbourhood T'x of X. We thus determine a time-dependent
vector field (7, = {(ry+¢}+ on Tx. Integrability and continuity of the controlled lifted
flow of the vector field defined on a stratum [5, 11] still follow when we consider on X
and Tx time-dependent vector fields instead of the usual vector fields. In particular, with
notations as above, we find :

PROPOSITION 2.6. Let X be a stratum of a C? abstract stratified set (resp. (c)-
reqular stratification) X = (A,X). Let (v, = {(ry ¢}t be a time-dependent vector field
on Tx obtained as a controlled (resp. continuous controlled) lifting of a time-dependent
vector field (x = {(x +}+ defined on X. Then the flow ¢, = {dry t}+ of {1y Satisfies the
(m, p)-control conditions and is a continuous extension of the flow ¢x = {dx+}+ of (x.

Proof. Thanks to the p-control condition on each (x¢ [5, 11, 12], for each y € Tx
the function px o ¢r, (y,t) is constant as ¢ varies, and the trajectory ¢r, (y,t) stays in
the level hypersurface p}l (p X (y)) The proof is then formally the same as in the classical
case [5, 11, 12]) of a lifted flow of a vector field which does not depend on time. O
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3. Extension of stratified homeomorphisms.

The stratified extension theorem proved below is based on techniques of Mather used
in proving that infinitesimal stability of a map f € C°°(S,S) implies stability [10].

We first give the extension theorem for (c)-regular stratifications [1] of a closed subset
of a manifold M.

STRATIFIED EXTENSION THEOREM 3.1. Let X = (A,X) be a C* (c)-regular stratifi-
cation of a closed subset A of a C*° manifold M, and let S denote the union of the strata
of dimension k of X.

There exists a neighbourhood B of 1g in Diff(S,S) such that each f € B extends to
a stratified homeomorphism f : A — A such that JE|A,€,1 =14, _,. Moreover there is a

stratified isotopy ® : A x I — A such that f = ®1, the section at time t = 1 of ®.

Proof. We adopt the notation of [10] and [23, chapter III]. Spaces of maps will be
given the Whitney C*° topology.

Step 1 : Construction, for f near 1g, of an isotopy ¢ between 1s and f which is the
flow of a time-dependent vector field on S.

Consider a “family of geodesics” of the smooth manifold S (see [10] or [23 Proposition
3.3.1]), i.e. a smooth map

V(@,y,0) =z V(r,y) e N
v:N xI— S such that Y(z,z,t) =2 VreS and Viel
Vzy,1) =y V(zy)eN

where N is a neighbourhood of the diagonal in S x S.
As in corollary 3.4.5 of [23], with W = {g € C*°(S,S) | (z,9(x)) € N} an open
neighbourhood of 1g in C*°(S, S), we may suppose the continuity of the map

G : W—C>®(SxI,SxI), defined for f €W by G(f)(z,t)= (v(z, f(2),t),t).

Writing G(f):(z) = G(f)(x,t), we have : G(f)o = 1s and G(f)1 = f.

For fixed f, define ¢ : S x I — I by ¢(z,t) = ¢(z) = y(z, f(x),t), i.e. dr = G(f)s.
So ¢g = 1g and ¢ = f.

We will prove that if U is a sufficiently small neighbourhood of 1g in Diff(.S,S),then
for each f € U the path v¢(t) = v(z, f(z),t) is contained in U and defines an isotopy
between 1g and f which is the flow of a time-dependent vector field.

Let U be an open neighbourhood of 15 in Diff(S,5).

After possibly shrinking W, we can assume W C U, so that W C Diff(S,.5).

By Lemma 3.4.9 of [23], there exists an open neighbourhood V' of the identity 1gxr
in C*(S x I,S x I), such that each F' € V is level-preserving, i.e. can be written
F(z,t) = (fi(z),t) and moreover for each t, f; € U. It will be convenient to write
F={ft:S— Sher.

With the notations of [23], we set V = {F € C¥(S x I,S xI) | Ap(I) CU }
where “lp” means “level-preserving”, and Ap(t) = f; for ¢t € I.

When F' € V, we see that F' is a level-preserving diffeomorphism of Sx I, because U C
Diff(S,S). Thus V is an open neighbourhood of 15, contained in Diff;,(S x I,S x I).

Because G : W — C(8 x I, S x I) is continuous, W’ = G~1(V) is an open neigh-
bourhood of 1g contained in U and

GW') C V C Diffi,(Sx1,8x1I).
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For each f € W', G(f) is a level-preserving diffeomorphism of S x I, i.e. G(f) =
{G(f)¢}1er, where each diffeomorphism G(f); lies in U.

In particular, if f € W’ the map ¢ = G(f): : S — S is a diffeomorphism, the path
vf(t) = ¢ defines an isotopy of S, and the image of ¢ is contained in U.

Now, given f € W’ and t € I, consider the vector field :

0 0

§i(z) = 9 T:O¢t+r($) = 5

'y(x, flx),t+ 7') .

=0

As & (x) is tangent to S at ¢i(z) = y(x, f(x),t), and ¢, is a diffeomorphism for each
t € I, the composed map

Ct:ftoéf);l S — S — TS
ro— ¢ () = &l (2)

defines a vector field on S.

Also 9 9
Ct(pe(z)) = &i(w) = 9 T:0¢t+r(9€) = a¢(1‘:t)a

so that ¢ : S x I — S is the flow of the time-dependent vector field ¢ = {(;}ixr €
I (r5TS). Recall that ¢(x,0) = ¢o(z) = 1g(z) = x and

¢1(z) = ¢(z,1) =~(z, f(z),1) = f(z), ie. d1=Ff,
by the properties of the family of geodesics ~.

Precision in the choice of U. To find the neighbourhood B claimed in the statement
of the theorem it is useful to choose carefully U. More regularity of f € U on S — S will
give more regularity of the extension fry : Ts — Ts of f in “step 27.

Let us consider for U the open neighbourhood of 1g in C*°(S, S) with the C!-topology
U= Bi(ls) ={g € Diff(S,9) | di(j'g(x),j'1s(x)) <é(x), Yz e S}

and hence with the C*°-topology (notation of [6]) where 0 : S —]0, 1] is a function having
a smooth extension by zero on 9S =S — S =J, g & with all its derivatives.

By choice of §, each f € U = Bk(1s) tends to 1g on dS and since [ > 1, such an
extension has a differential which is the identity on 95 : i.e. for every sequence {z,} in
S such that limx,, = € 95 and lim,, T,,, S = o we have that lim,, Jag, = ids .

Recall that the time-dependent vector field ( = {(;}; € I'**(7§T'S) defined in step
1 depends on a choice of f € W’ (f was in the definition of ¢, = G(f):); so we write
C(f) ={¢(f)+}+- This gives a continuous map :

9G — @ W —T(x5TS) , G(f) = C(f) : SxT—msTS =TS x 1

defined on the neighbourhood W' of 15 in U C Diff(S,S) [10, 23].

Mather showed (Lemma 2 on page 289 of [10], cf. Lemma 3.7.5 of [23]) that there
exists a neighbourhood Og of the zero vector field 0 in I'*°(7§T'S) such that every time-
dependent vector field ¢ € Og admits a flow 3 = 3(() defined for all time t € I :

B(Qo = 1s
B=pC):SxI—S such that and

B(C) € Diff(S,S), Vtel
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and such that the map
Os : I'°(nsTS) - C*(SxI1,S) , 0s(()=pC) : SxI—S8
is continuous.

Choose a neighbourhood B!(0) of the zero vector field 0 € T*°(S) and a neighbour-
hood B%(O) of 0 € I'*°(n§T'S) such that for each ( = {(i }ier € B,@(O) we have ¢; € BL(0)
for all ¢ € I (these exist by Lemma 3.4.9 of [23]), where €, 7 : S — (0,1) are smooth
functions which tend, with all their derivatives, to zero on the frontier 9.5 of S.

Set B = G’_l(Os N Bf](O)) As G’ is continuous and G’(1g) = 0, B is an open
neighbourhood of 15 in Diff(S,S) such that B C W’ C Bk(1s) = U and the following
properties i), . . . , i) hold for each f € B :

i) Because f € B C Bl(1g), f extends continuously by 1s on S and this extension
has a differential which extends continuously by the identity on 0.5, i.e. for any sequence
{zn} in S such that limz,, = = € 95 and lim,, T}, S = 7 we have that lim,, f., =id,.

i) Since f € G’fl(Bf](O)), the time-dependent vector field G'(f) = ¢(f) = {C(f)¢}+
is such that each level vector field {(f); : S — T'S, together with its derivatives, extends
continuously by zero on 95, because ((f); € BL(0).

iii) As G'(f) € Og, the time-dependent vector field G'(f) = ((f) = {{(f)¢}ter
admits a flow B({(f)): Sx I — S.

iv) Since f € W', writing B(C(f)) = {B(C(f)):}+ and ¢ = B(C(f)):, we have that
¢o = lg et ¢1 = f (by construction, see also Lemma 1 on page 289 of [10]).

Step 2 : Constructing an extension fry of f, on strata of dimension > k in a tubular
neighbourhood Ts = Uqim x=1T'x of S, such that fr, tends to the identity on 0S.

For each k-stratum X of A, i.e. each connected component X of .S, choose a tubular
neighbourhood Tx = Tx (1) of X in A; these neighbourhoods {T'x }x may be chosen
pairwise disjoint [12]. Denote by fx : X — X the restriction of f to X.

Let f € B C Diff(S,S). Then f preserves each connected component of S, and we
can write f = Ugim x=kfx with fx € Diff(X, X) for each k-stratum X of A.

To extend f : S — S to a stratified homeomorphism fr, : Ts — Tg, which is a
diffeomorphism on each stratum of T's = Ugim x=11'x, we define an extension fr, : Tx —
Tx of each fx and take the (disjoint) union fr, = Ux fr,.

Remark that each level vector field {(f); of S is a disjoint union ((f); = Ux{(f)tx-

Let ¢(f)rs = {C(f)t. 1 }rer be the stratified time-dependent vector field obtained by
controlled lifting to Ts = UxT'x of the level vector fields {(f); on S.

As the stratification X = (A, X) is (¢)-regular, we can assume that each {(f)¢ 1y is a
continuous lifting of ¢(f): on S [2, 22].

Since the time-dependent vector field ((f)ry is a controlled lifting of ((f) which
admits a flow ¢ : S x I — S, then, by Proposition 2.4, {(f)r, admits a flow defined for
all t € I, namely ¢, : Ts x I — Tg, which is a continuous extension of ¢.

Then for each f € B, the map at time t = 1, fry, = [¢15], : Ts — T is a continuous
extension of f : § — S. Moreover, as the map ¥ : f — f~! is continuous [10, 23],
replacing B by B U ¥(B) after shrinking B, we can suppose “f € B = f~! € B”. One
finds that (frs)~! = B(C(f~1)rs)1, thus frg is a stratified homeomorphism extending f.

Finally, since f € B, ((f); € BL(0) for all t € I, and so the continuous extension
C(f)t Ty also extends continuously by the zero vector field 0 on 9S. We have :

li — 2.
,im frs(z) =2
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Step 3 : Eutension of the restriction fp 1y to the whole of A. So as to obtain
an extension of the diffeomorphism f € B to A, we give a “deformation” of frg 1) on

Ts(1) — Ts(5) which tends to the identity on A — Ts(1) and to frga) on Ts(3).

Since frg(1) is defined by the family of vector fields ((f)rs = {((f)e1steer, we
can modify the modulus of each lifted controlled vector field ((f):ry as follows. Write
C(f)t1s = Udim x=kC(f)t 1y, and choose a smooth real function g : R — [0, 1] such that
g(s)=11if s <1 and g(s) =0 if s > 1. We define then the time-dependent vector field

C(Perx (2) = g(px(2)) - C(F)irx (2),

so that )
29
1

A _J )y i px(z
e

and it is controlled since every ((f)ry is controlled in Tx(3) C Tx (1) = Tx.

The flows dry of ((f)ry and ér, of ((f)ry satisfy dry (2,1) = éry (=, 9(px(2)) 1)
and since ¢, is defined for all ¢ € I, this also holds for ¢, .

<
>

Finally, because the neighbourhoods {T'x }dim x= are pairwise disjoint, we can define
a global time-dependent vector field on A :

Ao [CHr(z) fze€  Ugimx—iTx(1)
Pale) {o B A U x T (1)

Ty (1)

R

T (1)

figure 1

The time-dependent vector field ((f)4 clearly has a global flow, namely 3(¢(f)a) :
A x I — A, which extends continuously ¢, by the identity outside T'x (1).

Finally, for each f € B, the claimed extension f:A— Ais found by taking the map
at time t = 1, f = [B(¢(f)a)], : A — A. In fact, since for every ¢t € I, [B(¢(f)a)],: A —

A is a stratified homeomorphism, f is a stratified homeomorphism (see also proposition
2.4); since ((f)a = 0 on A1 then fi4, , = 14, ,; and since f = [ﬁ(((f)A)]l and

[ =1B(C(f))], (see step 1) with 3(C(f)a) extending B(¢(f)), then f:A— A extends
fi5-8 O

THEOREM 3.2. The statement of theorem 3.1 is valid if X is a C*° abstract stratified
set or a C* (w)-regular stratification of a closed subset of a C*° manifold.
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Proof. If X is an abstract stratified set [11] we can find a (b)-regular embedding of
X in some R™ (proved to exist in [7, 19, 24]; see also [20] for a (w)-regular subanalytic,
hence (b)-regular embedding) and apply Theorem 3.1. using that (b) implies (¢) [1].

If X is a (w)-regular stratification, it may not be possible to put an abstract stratified
structure on A, and (c)-regular embeddings may not exist (for example if A is the closure
in R? of {(z,y) |y = sin(1/z),x # 0}; this is not triangulable so is not even homeomorphic
to an abstract stratified set).

However, when X is (w)-regular a vector field ((f)x on a stratum X admits a strat-
ified rugose lifting ¢(f)r, whose flow is (rugose and hence) continuous [3, 26]. The only
change to the proof of Theorem 3.1 is to specify the {T'x } as pairwise disjoint neighbour-
hoods of the strata of dimension k (instead of tubular neighbourhoods associated to a
system of control data), and for each X let px be a smooth distance function.

The vector field Ux((f)ry, starting from Ux((f)ry, and the final extension ((f)a
on A, are obtained as in Theorem 3.1. O

REMARK 3.3. In the stratified extension theorems 3.1 and 3.2 if A is a closed stratified
subset of a manifold M it is easy to see that an extension exists on the whole of M, by
treating M as a stratified set of which A is a union of strata (add the components of
M — A as strata of codimension 0 in M).

4. Stratified Transversality of maps and of substratified objects.

In this section we use the stratified extension theorem 3.1 to prove a stratified
transversality theorem in which we deform a stratified map h : Z — X to make it
transverse to a fixed stratified map g : Y — X. A different proof of the same theorem
has been recently obtained by the authors in [18].

DEFINITION 4.1. Let X = (A, X) be a stratified space. A stratified isotopy of X (or
of A) is a stratified map ® : AxI — A, {®;: A — A}ier (where I = [0, 1]), such that for
every t € I, the map ®; : A — A, ®4(z) = ®(x,t) is a stratified homeomorphism. Clearly,
if {®;}; and {¥;}, are stratified isotopies of X then so is the composite map {¥; o ®;};.

DEFINITION 4.2. Let h,h' : Y — X be two stratified maps. We say that h’ is a
deformation by isotopy of h in X if there exists a stratified isotopy ® : X x I — X such
that &9 = 1x and h' = ®; 0 h , i.e. I’ is the deformation via ® and at time ¢t = 1 of h.

P
We write then h = /.
REMARK 4.3. The relation of “deformation by isotopy in X ” is an equivalence rela-

tion on the set of stratified maps h: Y — X .

REMARK 4.4. If ®: A x I — A is a stratified isotopy of X = (A, %) and h:Y — X
is a stratified map, for each t € I, hy = ®; o h is a deformation by isotopy of h in X.

DEFINITION 4.5. Two stratified maps h,g: Y — X are said to be transverse in the
k-skeleton X (or Ax) of X when for each stratum S of X their restrictions to S are
transverse in S. More precisely, given strata P and @ of Y such that h(P) C S and
9(Q) C S, the restrictions hjp : P — S and g : Q — S are transverse.

LEMMA 4.6. Let S be a C' manifold, let f € CY(S,S), and let h : P — S and
g:Q — S be C' maps defined on C* manifolds P and Q.
If the graph T'f of f is transverse to (h x g) then f o h is transverse to g.

Proof. See [17]. O

COROLLARY 4.7. With the hypotheses of Lemma 4.6, if f € Diff(S,S) and h: P —
X s inclusion, then f(P) is transverse to g: Q — S.

9
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THEOREM 4.8. Let X be a C*° abstract stratified set or a C™ (w)-regular stratified
subspace of a C*° manifold, and let g : Y — X be a stratified map defined on a stratified
space Y . For each stratified map h : Z — X there exists a deformation by isotopy h' of h
in X which is transverse to g.

Proof. By induction on the dimension of the k-skeleton A of A we construct a chain

P! P2 o
of n deformations by isotopy of hin X = (A,¥): h=h" =t = ... = A" such that
h* is transverse to ¢ in Ay, for every k =0,...,n.

Let k£ > 0 and suppose that h*~! has been constructed.

By the inductive hypothesis h*~! is transverse to g in A,_;, so we define the re-
striction of h* to Aj_; to coincide with h*~1. We complete the proof by deforming h*~!
without changing it on Ax_;.

Step 1 : Deformation of hﬁ;i_ Ay - Let {W,}a be the strata of (h*=1)~1(S), and
let hy @ Wy — S be the restriction of h to W,,. Similarly, write {Y3}3 for the strata of
g (S) and gg : Y3 — S for the restriction of g to Y. For all a, 3 the set

Tw,xv, = {f € C™(S,5) | I'f is transverse to ha X g3},

where I'f is the graph of f, is a countable intersection of open dense sets in C°(S,S)
[14] and the family {W, x Y3}, g being countable, so is

T = ﬂ TWQXYB:{fECOO(S,S;C)‘Ff transverse to hsxgs}.

h(Wa)CS , g(Yg)CS

Hence T is dense in the Baire space C*°(S,.5).

Consider now an open neighbourhood B of 1g in Diff(S,S) as in the proof of The-
orem 3.1, and let f € BNT.

Since f € T, for each h, and gg, Lemma 4.6 implies that f o hE=1 is transverse to
gp, and so f o hlg_l is transverse to gg. Defining h¥ = f o h*~1, h’§ is transverse to gg.

On the other hand f € B, so that the maps k¥ et h*~1 coincide on Aj_1, and, by

inductive hypothesis on A*~1, fo hﬁk—l is transverse to ga, , in Ag_;.

Therefore f o h’j‘k being transverse to g4, on Ay = Ar_1 US we conclude the step 1.

Step 2 : Deformation of th:lAk] and conclusion of the proof. Consider the stratified

homeomorphism f = &; = ®F : A — A constructed in Theorem 3.1 and set
hk _ fo hk—l .

Since the stratified isotopy ®F (see Theorem 3.1), satisfies ¥ = f, <I>’f| ¢ = f and
<I>’f|Ak_1 = ida,_, for the “whole deformation” h* of h*~1 h* = ®¥ o h*~1 we have :

hfj‘;il on Ap_q;
Rk = fo hlg_l on S=A; — Ai_q;
LS hﬁ;_lAk} on A—A.

Thus we complete the proof of the theorem by setting h’ = h™. d
A different proof of theorem 4.8 will be given in [10].

10
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In Theorem 4.8 the deformation by isotopy h' : Z — X of h transverse to g can be
obtained arbitrarily close to h. In fact since T is dense and B is a neighbourhood of 1g
in C*(S,5), the diffecomorphism f € BNT C Dif f(S,S) may be chosen arbitrarily near
to 1g and so the stratified homeomorphism f = ®; : A — A extension of f : S — S (see
theorem 3.1) may be obtained arbitrarily close to 14.

Transversality of substratified objects. In analogy with the definition of Whitney
substratified object V of X given by Goresky in [8] for V and X which are Whitney
stratified ((b)-regular), we give the following definition, where (E) means a regularity
conditions such as “to be an abstract stratified set”, the condition (b) of Whitney, the
condition (c¢) of Bekka, (w) of Verdier, or the Lipschitz condition of Mostowski.

DEFINITION 4.9. Let X = (A, X) be a stratified space. An (E)-regular substratified
object of X, is a stratified space V. = (V, 3y, ), such that V is a closed subset of A, Xy,
is (E)-regular and each stratum of V is contained in a unique stratum of X. If X and V
are both abstract stratified sets then we say that V is an abstract substratified set of X.

Obviously, if V is a substratified object of X, then the inclusion 7 : V — X is a
stratified map. Moreover for every stratum S of X , V' NS is a closed subset of S with an
induced stratification Vg = {R stratum of V | R C S}, i.e. the restriction of V to the
stratum S of X.

In what follows, when this is not ambiguous, we write simply V for a substratified
object V of X. Thus V, and A, denote the k-skeletons V , and X of V and X. Similarly,
when V (or X) is an abstract stratified set equipped with a system of control data (§2),
we assume given the system of control data.

DEFINITION 4.10. Let W = (W, Xy ) and W' = (W’ %y /) be two substratified
objects of a stratified space X = (A,X). We say that W’ is a deformation by isotopy
of W in A if there exists a stratified isotopy ® : A x I — A such that &5 = 14 and

W’ = & (W). We write then W 2 W or O, W =W

Of course “Deformation by isotopy” is an equivalence relation on the set of all sub-
stratified objects of X. Moreover one easily has :

PROPOSITION 4.11. If ® : Ax I — A is a stratified isotopy of X = (A, %) and W is
a substratified object of X , then for each t € I the image W' = ®,(W ) is a substratified
object with stratification induced by ®, and W' is a deformation by isotopy of W.

Proof. We only have to remark that when W is an abstract stratified set, if

mw,, : Tw, — Wy

F W = {(TWQ77TWa?pWQ)}WaEEW ; {pWa . TWa SR

is the system of control data for W = U,W,,, then the family

{(‘I)t(TWa)v O mw, D, pw, q)t_l) }cbt(Wa) stratum of W'

is a system of control data for W’ = U,®:(W,). In fact, all topological properties of
the abstract stratified sets are preserved via the homeomorphism ®; : A — A and the
submersivity of the maps (mw,, pw, ) is preserved by the diffeomorphisms {®; : X — X},
(X stratum of 4). O

Suppose now that W is a substratified object of X, and that the map h = i :
W < X is the stratified inclusion of W in X, and consider the map h' = ®; o h.

11
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Because the transversalising deformation ®; is a stratified homeomorphism, and hence is
a diffeomorphism on each stratum, by Lemma 4.7 the condition “h’ = ®; o h is transverse
to g” may be reread as ‘W' = &1 (W) is transverse to g”. Thus we have the following
corollary which generalizes the Transversality Lemma of Goresky [8].

COROLLARY 4.12. Let X be a C* abstract stratified set, or a (w)-reqular stratified
subspace of a C* manifold, and let g : Y — X be a stratified map on a stratified space Y .
For each substratified object W of X and each open neighbourhood U of W in X, there
exists a deformation by isotopy W' of W which is transverse to g and such that W' C U.

Corollary 4.12 holds for stratifications and stratified maps more general than that of
the Transversality Lemma of [8]. For we do not require :

i) that g be controlled with respect to two fized systems of control data T1 et To
respectively of Y and X or that g be the restriction of a smooth map g : M1 — Mo
between two smooth manifolds containing respectively Y and X ;

or

i) that W satisfy the w-fibre condition.

The m-fibre condition is a very strong restriction on the geometry of the substratified
object W on X and ensures that (b)-regularity be preserved as was shown in [8]. Possibly
other regularity conditions are preserved, for example this is the case for (a)-regularity. A
priori there is no reason that a stratified isotopy of X as in corollary 4.12 preserve regularity
conditions on substratified objects W of X other than “being an abstract substratified set
of X 7.

Corollary 4.12 (when g : Y < X is the inclusion map and dim(Y N.S)+dim(WNS) <
dim S for every stratum S of X) was used by M. Grinberg to prove the existence of self-
indexing stratified Morse functions on complex algebraic varieties [9].
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