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STRATIFIED TRANSVERSALITY BY ISOTOPY

C. MUROLO, D. J. A. TROTMAN, AND A. A. DU PLESSIS

Abstract. For X an abstract stratified set or a (w)-regular stratification,
hence for any (b)-, (c)- or (L)-regular stratification, we prove that after strati-
fied isotopy of X , a stratified subspace W of X , or a stratified map h : Z → X ,
can be made transverse to a fixed stratified map g : Y → X .

1. Introduction

Let X = (A,Σ) be a stratified space (see §2 for the definition). A substratified
object of X is a stratified spaceW = (W,ΣW ), where W is a subset of A, such that
each stratum in ΣW is contained in a single stratum of X .

In this paper we consider the problem of putting a substratified object W of X
in transverse position with respect to a fixed substratified object V of X or more
generally with respect to a fixed stratified map g : Y → X , for some stratified
space Y. More precisely, we deform W via a stratified isotopy Φ : X × I → X to
a substratified object W ′ = Φ1(W) of X which is transverse to V in X , or more
generally transverse to g.

This problem was resolved by Clint McCrory for stratified polyhedra [20], [21];
his result is essential to the foundations of intersection homology [13]. For Whitney
(b)-regular stratifications Mark Goresky stated, with only a sketch of a proof, such
a transversality theorem ((5.3) in [12]), valid for a restricted class of substratified
objects, and only for controlled maps g : Y → X . This result is essential in prov-
ing his main theorems about representing homology and cohomology by stratified
objects (3.4, 4.7 and 6.2 of [12]). In this paper we adapt the proof indicated in
[12], to give a version with less restrictive hypotheses which allows one to develop
further Goresky’s geometric homology theory [24]. Some details are given at the
end of this introduction.

Goresky’s result applies to those substratified objectsW of X satisfying a π-fibre
condition with respect to a fixed system of control data F = {(πX , ρX) : TX →
X× [0,∞)}X∈Σ, and to a stratified map g : Y → X which is controlled with respect
to two systems of control data. The π-fibre condition says that W is locally, near
each point x of A, a union of fibres of the projection πS : TS → S, where S is the
stratum containing x, while the control condition on the map g imposes a similar
property for the fibres of g (and of πS). These conditions were used by Goresky to
preserve transversality with respect to g of a deformation W ′ ofW in his inductive
proof.
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Goresky’s transversality theorem has been shown to be very useful in several
important applications [12], [22], [23]; but the hypotheses of π-fibre on W and
control on g prevent a wider use.

The stratified transversality theorem we give in this paper holds for the most
important types of regular stratifications, and for every stratified map without
assuming control conditions. In particular, we obtain an analogue of Goresky’s
theorem for stratified maps g : Y → X which are not necessarily controlled and
for substratified objects W which are not necessarily π-fibre. We also obtain the
analogous theorem for two arbitrary stratified maps.

We acknowledge with thanks the referee’s detailed comments on an earlier version
of this work.

The contents of the paper are as follows.
In §2 we review the most important classes of regular stratifications: the ab-

stract stratified sets of Thom and Mather [32], [18], [19], Whitney (b)-regular strat-
ifications [36], the (c)-regular stratifications of Karim Bekka [3], the (w)-regular
stratifications of Verdier [34] and the (L)-regular stratifications of Mostowski and
Parusiński [29]. We briefly recall the relations between them.

In §3 we prove a transversality theorem (Theorem 3.8) for an abstract stratified
set X , thus including stratifications which are (c)-regular [3] or (b)-regular [18], [19].
This shows that, given a substratified object V of X , every other substratified object
W of X may be deformed by a stratified isotopy Φ : X × I → X to a substratified
object W ′ = Φ1(W) of X which is transverse to V in X . Moreover, W ′ may be
chosen in an arbitrarily small neighbourhood ofW . Then we give a relative version
(3.9), and show that similar proofs apply to (w)-regular stratifications (Theorem
3.13).

One can ask whether in the stratified transversality theorem one can require that
V ∩W ′ and V ∪W ′ be again stratified spaces. We conclude the section by giving
examples showing that this is not always so. Our result is thus the best possible
in this category. On the other hand, cases when this can be done have important
applications.

In §4 we improve Theorems 3.8, 3.9 and 3.13 by showing that for stratified maps
g : Y → X and h : Z → X there exists a deformation by isotopy h′ of h in X which
is transverse to g (Theorem 4.4). The proof, by induction on the dimension k of
a skeleton Xk of X , applies to stratifications for which good lifting of vector fields
exists, in particular to abstract stratified sets and to (w)-regular stratifications (and
hence to (b)-, (c)- and (L)-regular stratifications).

If h : W ↪→ X is a stratified inclusion (i.e. W is the substratified object of X
to deform), we seek a substratified object W ′, isotopic to W and transverse to g.
The transversalising deformation Φ1 : X → X such that W ′ = Φ1(W) is the time
1 homeomorphism of a stratified isotopy Φ = {Φt = Φnt ◦ · · · ◦ Φ1

t : X → X}t∈I ,
obtained by composition of one-parameter groups {Φit : X → X}t∈R, which are the
flows of continuous liftings of vector fields [26].

In §5 we consider the problem of preserving regularity conditions on substratified
objects W after deformation (that is, the problem of the regularity of W ′). The
possibility of lifting vector fields continuously is useful here; also the notion of semi-
differentiable stratified map introduced in [24]; see [25]. When X is (c)-regular and
the time 1 map of the transversalising isotopy Φ1 : A → A is semi-differentiable,
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then W ′ = Φ1(W) is (a)- or (c)-regular if W is respectively (a)- or (c)-regular
(Proposition 5.2).

When X has a Whitney (b)-regular stratification it is unknown whether semi-
differentiability of Φ1 : X → X suffices to preserve (b)-regularity. Such preservation
would be useful for Goresky’s “Whitney homology theory” {WH∗,WH∗} ([11], [12],
[22], [23]), providing an approach to a celebrated conjecture: “The representation
map R : WHk(X ) → Hk(X ) is a bijection for every Whitney stratification X”
[11], [12]. This was the original motivation of our work. The first author has
used the results of the present paper to extend Goresky’s theory of homology and
cohomology to abstract stratified sets and (c)-regular stratifications, so obtaining
new homology theories {AH∗, AH∗} and {BH∗, BH∗} ([24], chapter IV, and [5]).

In these stratified homology theories, the transversality theorem proved here
allows one to give geometric meaning to the operations of sum, cup, cap and cross
product, analogous to the results of [11], [12], [22], [23]. It also gives geometrical
sense to induced homomorphisms and to the Poincaré duality homomorphism.

The transversality theorem thus plays a similar role to the “Moving Lemma” in
the theory of Chow rings CH∗ for algebraic cycles of an algebraic variety [7].

2. Regular stratified spaces

We recall that a stratification of a topological space A is a locally finite partition
Σ of A into C1 connected manifolds (called the strata of Σ) satisfying the frontier
condition: if X and Y are disjoint strata such that X intersects the closure of Y ,
then X is contained in the closure of Y . We then write X < Y and ∂Y = Y − Y ,
so that Y = Y t

(⊔
X<Y X

)
and ∂Y =

⊔
X<Y X (t = disjoint union).

The pair X = (A,Σ) is called a stratified space with support A and stratification
Σ. The union of the strata of dimension ≤ k is called the k-skeleton, denoted by
Ak, inducing a stratified space Xk = (Ak,Σ|Ak).

A stratified map f : X → X ′ between stratified spaces X = (A,Σ) and X ′ =
(B,Σ′) is a continuous map f : A → B which sends each stratum X of X into a
unique stratum X ′ of X ′, such that the restriction fX : X → X ′ is smooth. We
call such a map f a stratified homeomorphism if f is a global homeomorphism and
each fX is a diffeomorphism.

A stratified vector field on X is a family ζ = {ζX}X∈Σ of vector fields such that
ζX is a smooth vector field on the stratum X .

Extra conditions may be imposed on the stratification Σ, such as to be an abstract
stratified set in the sense of Thom-Mather ([8], [18], [29], [35]) or, when A is a subset
of a C1 manifold, to satisfy conditions (a) or (b) of Whitney ([18], [19], [36]), or (c)
of K. Bekka ([2], [3]) or, when A is a subset of a C2 manifold, to satisfy conditions
(w) of Kuo and Verdier [34], or (L) of Mostowski (see [29]).

Now we recall these conditions and their more important relations.

Definition 2.1 (Thom and Mather). Let X = (A,Σ) be a stratified space.
A family F = {(πX , ρX , TX)}X∈Σ is called a system of control data for X if for

each stratum X we have that:
1) TX is a neighbourhood of X in A (called a tubular neighbourhood of X);
2) πX : TX → X is a continuous retraction of TX onto X (called projection on

X);
3) ρX : TX → [0,∞) is a continuous function such that X = ρ−1

X (0) (called the
distance function from X)



4884 C. MUROLO, D. J. A. TROTMAN, AND A. A. DU PLESSIS

and, furthermore, for every pair of adjacent strata X < Y , by considering the
restriction maps πXY = πX|TXY and ρXY = ρX|TXY , on the subset TXY = TX ∩ Y ,
we have that:

5) the map (πXY , ρXY ) : TXY → X × (0,∞) is a smooth submersion (it follows
in particular that dimX < dimY );

6) for every stratum Z of X such that Z > Y > X and for every z ∈ TY Z ∩TXZ
the following control conditions are satisfied:
i) πXY πY Z(z) = πXZ(z) (called the π-control condition), and
ii) ρXY πY Z(z) = ρXZ(z) (called the ρ-control condition).

In what follows we will set TX(ε) = ρ−1
X ([0, ε)) , ∀ ε ≥ 0, and without loss of

generality will assume TX = TX(1) [8], [19].
If A is Hausdorff, locally compact and admits a countable basis for its topology,

the pair (X ,F) is called an abstract stratified set. Since one usually works with a
unique system of control data of X , in what follows we will omit F .

If X is an abstract stratified set, then A is metrizable and the tubular neigh-
bourhoods {TX}X∈Σ may (and will always) be chosen such that: “TXY 6= ∅ if and
only if X < Y or X > Y or X = Y ” (see [19], page 41 and following).

Let f : X → X ′ be a stratified map between two abstract stratified sets, and let
us fix two systems of control data

F = {(TX , πX , ρX)}X∈Σ and F ′ = {(TX′ , πX′ , ρX′)}X′∈Σ′

respectively of X and X ′. The map f is called controlled (with respect to F and
F ′) if when X < Y there exists ε > 0 such that for all y ∈ TXY (ε) = TX(ε)∩ Y the
following two control conditions hold:{

πX′Y ′fY (y) = fXπXY (y) (the π-control condition for f),
ρX′Y ′fY (y) = ρXY (y) (the ρ-control condition for f).

Similarly, a stratified vector field ζ = {ζX}X∈Σ is controlled (with respect to F)
if the following two control conditions hold:{

πXY ∗(ζY (y)) = ζX(πXY (y)) (the π-control condition for ζ),
ρXY ∗(ζY (y)) = 0 (the ρ-control condition for ζ).

The notion of system of control data of X , introduced by Mather in [19], is the
fundamental tool allowing one to obtain good extensions of vector fields. In fact,
we have [8], [19]

Proposition 2.2. If X is an abstract stratified set, every vector field ζX defined
on a stratum X of X admits a stratified (π, ρ)-controlled lifting ζTX = {ζY }Y≥X
defined on a tubular neighbourhood TX of X. Moreover, if ζX admits a global flow
{φt : X → X}t∈R, then such a lifting ζTX admits again a global flow {φTX t : TX →
TX}t∈R, and every φTX t : TX → TX is a stratified, continuous and (π, ρ)-controlled
homeomorphism.

Definition 2.3 (K. Bekka 1990). A stratified space (A,Σ) is called (c)-regular if,
for every stratum X ∈ Σ, there exist an open neighbourhood UX of X in Rn and
a C1 function ρX : UX → [0,∞) such that ρ−1

X (0) = X , and such that its stratified
restriction to the star of X ,

ρX : Star(X) ∩ UX → [0,∞) is a Thom map,
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where Star(X) =
⋃
Y ∈Σ , Y≥X Y and the stratification on Star(X)∩UX is induced

by Σ.
In substance, the (c)-regularity of Bekka means that for every pair of adjacent

strata X < Y , the tangent spaces at y ∈ Y to the level hypersurfaces ρ−1
X (ε) (where

ε = ρX(y)) have limits which contain TxX when y → x ∈ X .

Definition 2.4 (Verdier 1976). For any vector subspaces U, V of Rn, denote

δ(U, V ) = sup
u∈U , ||u||=1

inf
v∈V

||u− v || .

A stratified space (A,Σ) with A ⊆ Rn is called (w)-regular if, for every pair of
strata X < Y ∈ Σ and every x0 ∈ X there exist a neighbourhood Ux0 of x0 on Rn
and a constant Cx0 > 0 such that

δ(TyY, TxX) ≤ Cx0 || y − x || ∀x ∈ Ux0 ∩X and ∀y ∈ Ux0 ∩ Y .
We recall now the most important properties of lifting of vector fields on such

regular stratifications and the most useful relations between them.
i) The condition “to be a Thom-Mather abstract stratified set” implies the ex-

istence of controlled lifting of vector fields [19].
ii) Bekka’s (c)-regularity is characterized by the existence of continuous and

controlled lifting of vector fields [30], and implies the condition “to be a Thom-
Mather abstract stratified set” [2], [3]. Moreover for (c)-regular stratifications one
can also find systems of control data whose maps {(πX , ρX) : TX → X × [0,∞)}X
are C1 [2], [3].
iii) (b)-regularity implies (c)-regularity [2], [3].
iv) Verdier’s (w)-regularity is characterized by the existence of rugose lifting of

vector fields [6], [34].
v) (L)-regularity is characterized by the existence of Lipschitz lifting of vector

fields [29] and implies (w)-regularity.
Finally, recall the following important facts.
A) Every abstract stratified set admits a (b)-regular embedding [11], [27], [31],

and even [28] a subanalytic (w)-regular (and hence (b)-regular [15], [34]) embedding
in some RN .
B) The first isotopy theorem of Thom holds for all the kinds of stratification

considered above, using the (claimed) properties of stratified lifting of vector fields.

3. Stratified isotopy and transversality of substratified objects

In analogy with the definition of a Whitney substratified object V of X given by
Goresky in [12] for V and X which are Whitney stratified ((b)-regular), we give the
following definition, where (E) means one of the regularity conditions: “to be an
abstract stratified set”, the condition (b) of Whitney, the condition (c) of Bekka,
(w) of Verdier, or the condition (L) of Mostowski.

Definition 3.1. Let X = (A,Σ) be a stratified space. An (E)-regular substratified
object of X is a stratified space V = (V,ΣV ), such that V is a closed subset of
A, ΣV is (E)-regular and each stratum of V is contained in a unique stratum of
X . If X and V are both abstract stratified sets, then we say that V is an abstract
substratified set of X .

If V is a substratified object of X , then the inclusion i : V ↪→ X is a stratified
map and for each stratum S of X , V ∩ S is a closed subset of S with an induced
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stratification VS = {R stratum of V | R ⊆ S } : the restriction of V to the stratum
S of X .

In what follows, when this is not ambiguous, we write simply V for a substratified
object V of X . Thus Vk and Ak denote the k-skeletons Vk and Xk of V and X .
Similarly, when V (or X ) is an abstract stratified set equipped with a system of
control data ([8], [18], [19], [35]), we assume given the system of control data of X .

Definition 3.2. Let X = (A,Σ) be a stratified space. A stratified isotopy of X (or
of A) Φ : A× I → A (denoted also {Φt : A→ A }t∈I) is a stratified map such that
for every t ∈ I, the map at time t, Φt : A → A, is a stratified homeomorphism of
A.

Clearly, if {Φt}t∈I and {Ψt}t∈I are stratified isotopies of a stratified space X ,
then so is {Ψt ◦ Φt}t∈I .

Definition 3.3. Let W = (W,ΣW) and W ′ = (W ′,ΣW′) be two substratified
objects of a stratified space X = (A,Σ). We say that W ′ is a deformation by
isotopy of W in A if there exists a stratified isotopy Φ : A × I → A such that

Φ0 = 1A and W ′ = Φ1(W ). We then write W
Φ≡W ′.

Clearly “deformation by isotopy” is an equivalence relation on the set of all
substratified objects of X .

If Φ : A × I → A is a stratified isotopy of X = (A,Σ) and W is a substratified
object of X , then for each t ∈ I the image W ′ = Φt(W) is a substratified object
with stratification induced by Φt, and W ′ is a deformation by isotopy of W .

The proof of the main theorem of the section (Theorem 3.8) requires some lem-
mas.

Lemma 3.4. Let S be a smooth (not necessarily compact) manifold, and ξ : S →
TS a smooth vector field on S.

i) For every proper smooth function g : S → R, if ρ denotes the function

ρ : S → (0, 1], ρ(x) = e−[g∗x(ξ(x))]2 ,

the vector field η(x) = ρ(x)ξ(x) is complete (i.e. its flow is defined for every t ∈ R).
ii) If ξ is complete, then for every C∞ function δ : S → (0, 1] the vector field

η(x) = δ(x)ξ(x) is complete too.

Proof. i) may be found in [9] (Proposition 1.13, chapter V), while ii) is an exercise.
�

Lemma 3.5. Given a smooth manifold S ⊆ Rr, there exists a family v1, . . . , vr of
C∞ vector fields on S such that:

i) TxS = [v1(x), . . . , vr(x)], i.e., TxS is generated by v1(x), . . . , vr(x), ∀x ∈ S.
ii) vi is complete for each i ≤ r; i.e., its flow φi : S × R→ S is defined ∀t ∈ R.
iii) If ∂S = S − S 6= ∅, then for every x0 ∈ ∂S one has

lim
x→x0

vi(x) = 0 , with all its derivatives, so that vi ∈ C∞(S) for each i ≤ r.

Proof. As S ⊆ Rr, we can consider the standard constant vector fields {Ei(x) =
Ei = (0, . . . , 1, . . . 0)}i≤r which generate Rr at each point x. For each x ∈ S
denote by pTxS : Rr → TxS the orthogonal projection of Rr on TxS; then, setting
Vi(x) = pTxS(Ei), where i ≤ r and x ∈ S, the vector fields {Vi(x)}i≤r span TxS.

Applying Lemma 3.4, we obtain i) and ii) by defining vi = ρiVi with ρi(x) =
e−[g∗x(Vi(x))]2 .
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Now we will show how to choose for each ρi(x), i = 1, . . . , r, the same function
ρ(x).

In fact, by reconsidering the proofs of Propositions 1.13 and 1.10 on page 102
of [9], if we set ρ(x) = e−

∑r
j=1[g∗x(Vj(x))]2, we see easily that for each maximal

integral curve c : (a, b) → S of vi, for each i ≤ r, || ddtg ◦ c(t)|| ≤ 1. Hence
a = −∞ and b = +∞; in fact if b < +∞, then (g ◦ c)([0, b)) would be bounded and
c([0, b)) ⊆ g−1([−M,M ]) would be contained in a compact set of S (as g is proper),
implying b = +∞. Similarly, a = −∞. Thus each vi is again complete.

If now ∂S = S − S 6= ∅, then the proof of iii) follows by considering the vector
fields {vi = ρVi}i≤r, where ρ is the function

ρ : S → (0, 1], ρ(x) = e
−
(∑r

j=1[g∗x(Vi(x))]2+ 1
d(x,∂S)2

)
and d(x, ∂S) denotes the euclidean distance of x from ∂S in Rr. �

Lemma 3.6. Let P and Q be two smooth submanifolds of a smooth manifold S
and let f be a diffeomorphism of S. If the graph Γf of f is transverse to P ×Q in
S × S, then the restriction fP : P → S is transverse to Q.

Proof. Exercise. �

Definition 3.7. Two substratified objects V and W of X are called transverse
over the k-skeleton Xk if for each stratum S of Xk the restrictions VS and WS are
transverse in S.

Theorem 3.8 below is an analogue of the transversality theorem stated by Goresky
in [12], for a Whitney substratified objectW of X and a stratified inclusion i : V →
X . Here the stratified space X is an abstract stratified set. We require no further
hypothesis about the regularity of the substratified objects of X .

The authors gave a different proof of this theorem in 1997 [24] using time-
dependent vector fields and the techniques introduced by Mather [17] to prove
that infinitesimal stability of smooth mappings implies stability.

Theorem 3.8. Let X = (A,Σ) be an abstract stratified set and V a substratified
object of X . For each substratified object W of X , and each open neighbourhood U
of W in A, there exists a deformation by isotopy W ′ of W, transverse to V in X ,
such that W ′ ⊆ U .

Proof. It will be sufficient to prove the theorem for a (b)-regular embedding of
X = (A,Σ) in a Euclidean space Rr [11], [27], [31]. Suppose then that A ⊆ Rr.

By induction on the dimension k ≤ n = dimA of the skeleton Ak of A, we will
construct a chain of n deformations by isotopy of W in A,

W (0)
Φ1

≡ W (1)
Φ2

≡ · · · Φn≡ W (n) ,

such that W (k) is transverse to V in Ak for all k = 0, . . . , n.
For k = 0 we can obviously choose W (0) = W .

Suppose we have constructed a chain W (0)
Φ1

≡ W (1)
Φ2

≡ · · · Φk−1

≡ W (k − 1).
By the induction hypothesis, W (k − 1) is transverse to V in Ak−1, so we can

define the part of W (k) contained in Ak−1 by

W (k) ∩Ak−1 = W (k − 1) ∩Ak−1.
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We complete the construction of W (k) in two steps:
Step 1: Construction of W (k) ∩ [Ak −Ak−1].
Let S = Ak − Ak−1 be the smooth manifold of dimension k, the union of all

k-strata of A. We shall find a diffeomorphism f : S → S which deforms the strata
of W (k − 1) ∩ S, making them transverse to V ∩ S.

Let us consider a family v1, . . . , vr of C∞ vector fields on S, as constructed in
Lemma 3.5, such that:

i) TxS = [v1(x), . . . , vr(x)] for every x ∈ S;
ii) vi is complete for each i ≤ r; i.e. its flow φi : S × R→ S is defined ∀t ∈ R;
iii) lim

x→∂S
vi(x) = 0 with all its derivatives, so that vi ∈ C∞(S) for each i ≤ r.

Let us consider the vector field ζ on S×Rr defined for x ∈ S and b = (b1, . . . , br) ∈
Rr by

ζ(x, b) =
( r∑
i=1

bivi(x) , 0
)
.

Then ζ is “level preserving” in the sense that for each b ∈ Rr

ζb : S → TS, ζb(x) = pr1ζ(x, b) =
∑r

i=1 bivi(x),

defines a vector field tangent to the manifold S.
With notation as in Lemma 3.5, for every b such that ||b|| < 1 one easily sees

that for the maximal integral curves cb of the vector field ζb(x) =
∑r
i=1 biρ(x)Vi(x),

|| ddtg◦cb(t)|| ≤ r, and this implies that ζb has the properties i), ii) and iii) of Lemma
3.5.

In particular we deduce that, if B = B(0, 1) denotes the open unit ball of Rr,
for every b ∈ B the vector field ζb has a global flow ψb : S × R → S and the same
property holds for the restricted vector field (again called ζ):

ζ : S ×B → T (S ×B), ζ(x, b) =
( r∑
i=1

bivi(x) , 0
)
.

If
ψ : S ×B × R→ S ×B, (x, b, t) 7→ ψ(x, b, t),

denotes the global flow of ζ, then for each b ∈ Rr the map

ψb : S × R→ S, ψb(x, t) = pr1ψ(x, b, t),

is the global flow of the vector field ζb on S.
Denote by E1, . . . , Er the standard frame fields of Rr and consider the vector

fields ζb and ζb′ corresponding to b = Ei and b′ = εEi = (0, . . . , 0, ε, 0, . . . , 0). Such
vector fields satisfy:
iv) ζEi(x) = vi(x);
v) ζεEi(x) = ε · ζEi(x) = ε · vi(x), and their flows ψEi and ψεEi are related by

the formula
ψεEi(x, τ) = ψEi(x, ετ) .

By considering the smooth map

G : S × Rr −→ S, G(x, b) = pr1 ◦ ψ(x, b, 1) = ψb(x, 1),

we can prove the submersivity of all partial maps:

Gx : Rr → S, Gx(b) = ψb(x, 1) .
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In fact, for each x ∈ S we have

(Gx)∗b(TbRr) = (Gx)∗b([E1, . . . , Er]) = [(Gx)∗b(E1), . . . , (Gx)∗b(Er)],

and for each i ≤ r, we have

(Gx)∗b(Ei) =
∂Gx
∂bi

∣∣∣
b

=
d

ds

∣∣∣
s=0

ψb+sEi1 (x) = [(ψb+sEi1 ∗x )|s=0

( d
ds

∣∣∣
s=0

ψsEi(x, 1)
)

= ψb1 ∗x

( d
ds

∣∣∣
s=0

ψEi(x, s)
)

= ψb1 ∗x(ζEi(x)) = ψb1 ∗x(vi(x)),

and, ψb1 : S → S being a diffeomorphism, by i) we deduce that

(Gx)∗b(TbRr) = ψb1 ∗x[v1(x), . . . , vr(x)] = [ψb1 ∗x(v1(x)), . . . , ψb1 ∗x(vr(x))] = Tx′S ,

where x′ = Gx(b) = ψb(x, 1).
Consider now, for each b ∈ B, the 0-jet map of Gb = ψb1 : S → S, i.e. the graph

map:
j0Gb : S → S × S, j0Gb(x) = (x,Gb(x)) = (x, ψb1(x)),

and denote by {Wα}α and by {Vβ}β respectively the possibly infinite countable
families of strata of the restrictions W (k − 1) ∩ S and V ∩ S.

In the same way as in [10] (Lemma 4.6 and Corollary 4.7), by Sard’s theorem
applied to the map j : B → C∞(S, S), j(b) = j0Gb, we find that every subset

Mα,β =
{
b ∈ B | j0Gb is not transverse to Wα × Vβ

}
⊆ B ⊆ Rr

has measure zero in Rr, and so this also holds for the countable union M =⋃
α,βMα,β.
Consider then for a fixed b ∈ B −M the map f = ψb1 : S → S.
First of all, by construction we have that f is the time 1 diffeomorphism of the

flow of the vector field ζb. On the other hand, since b 6∈ M , the graph Γf of f is
transverse to Wα × Vβ , so by Lemma 3.6, f(Wα) is transverse to Wβ for all α, β,
i.e. f(W (k − 1) ∩ S) is transverse to V ∩ S .

Hence we can conclude step 1 by defining W (k) ∩ S = f(W (k − 1) ∩ S).
Step 2 : Construction of W (k) ∩ [A−Ak] and conclusion of the proof.
The aim of this step is to construct a stratified homeomorphism f̃ : A → A, an

extension of f , in such a way as to define W (k)∩ [A−Ak] = f̃
(
W (k−1)∩ [A−Ak]

)
.

We will not need transversality between W (k)∩[A−Ak] and V ∩[A−Ak] in A−Ak.
Since f = ψb1 is the time 1 flow of a vector field ζb on S, f̃ will be obtained by

extending ζb on A and by considering the time 1 flow of such an extension.
We first will do a controlled lifting of ζb in a tubular neighbourhood TS =⊔

dimX=kTX of S and then we modify it slightly to obtain an extension of it on the
whole of A.

For each k-stratum X of A, i.e. each connected component X of S, choose a
tubular neighbourhood TX = TX(1) of X in A; these neighbourhoods {TX}X may
be chosen pairwise disjoint [19]. Denote by fX : X → X the restriction of f to X .

Clearly f = ψb1 preserves each connected component of S, and one can write

f =
⊔

dimX=k

fX

with fX ∈ Diff(X,X) for each k-stratum X of A.
Denoting from now on by ζ the vector field ζb, similarly we can write ζ =

⊔
X ζX .
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By Proposition 2.2 there exists a stratified vector field ζTS , a controlled lifting on
TS =

⊔
X TX of the vector field ζ on S. As the embedded stratification X = (A,Σ)

is (b)- and hence (c)-regular, we can also assume that each ζTS is continuous on TS
([4], [30], and §2).

Because the vector field ζTS is a controlled lifting of ζ and ζ admits a global flow
φ = ψb, then by Proposition 2.2 again ζTS admits a global flow too, namely ψTS ,
which is a continuous extension of φ.

Let us consider a C∞ function g : R → [0, 1] such that g(s) = 1 if s ≤ 1
2 and

g(s) = 0 if s ≥ 1. Because the neighbourhoods {TX}dimX=k are pairwise disjoint,
we can define a vector field ζA = ζkA on the whole of A :

ζA(x) = ζkA(x) =


g(ρX(x)) · ζTX (x) if x ∈

⊔
dimX=k TX(1),

0 if x ∈ A−
⊔

dimX=k TX(1) ,

which is a continuous extension of ζ, since ζ = ζb =
∑
i bivi satisfies condition iii)

of Lemma 3.5.
The vector field ζA clearly has a global flow Φ : A×R→ A, which continuously

extends the flow of ζTS by the identity outside TS(1).
The claimed extension f̃ : A→ A is found by taking f̃ = Φ1 : A→ A.
In fact, since every Φt : A → A is a stratified homeomorphism, f̃ is too; since

ζA = 0 on Ak−1, then f̃|Ak−1 = 1Ak−1 ; and finally since f = ψb1 (see step 1) and ζA
extends ζb, then f̃ : A→ A extends f : S → S. Moreover, f̃ : A→ A is of course a
diffeomorphism on each stratum of A and is the identity on Ak−1. We then define
W (k) = f̃(W (k − 1)).

Closing induction and end of the proof. As Φ was constructed in the kth induction
step, we write Φ = Φk. Then, as Φk1 |Ak−1

= idAk−1 ,Φ
k
1 |S = f ,Φk1 = f̃ , one has

W (k) =
(
W (k − 1) ∩Ak−1

)
∪ f

(
W (k − 1) ∩ S

)
∪ Φk1

(
W (k − 1) ∩ (A−Ak)

)
.

BecauseW (k) coincides with W (k−1) in Ak−1 and, by step 1, W (k) is transverse
to V in S = Ak −Ak−1, we have that W (k) is transverse to V in Ak.

On the other hand, W (k) = Φk1(W (k−1)), and so W (k) is a substratified object
of A and is a deformation by isotopy of W (k − 1).

Finally, “deformation by isotopy” being transitive, we conclude the proof by set-
ting W ′ = W (n). See Remark 3.11 for precise details concerning the neighbourhood
U of W . �

The proof of Theorem 3.8 is based on the idea, sketched on page 39 of the book
by Goresky and MacPherson [14], of using a family of self maps of a manifold
S, following the ingenious method of Abraham and Robbin [1]. Step 1 shows in
particular the following very useful property: “Every smooth manifold S admits a
submersive family of self maps”.

A version of this idea can be found in Chapter 6 of the 1976 thesis of Goresky
[11].

Theorem 3.9 (Relative version of 3.8). With the same hypotheses and notation as
in Theorem 3.8, if Z is a closed subset of A at each point of which W is transverse
to V, one can obtain moreover that the transversalising isotopy Φ : A × I → A
satisfies Φt|Z = id for all t ∈ I, and so W ′ ∩ Z =W ∩ Z.
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Proof. We adapt the proof of Theorem 3.8 by making a slight modification.
As Z is a closed subset of A, there exists a C∞ function δ : A → [0, 1] which

vanishes only on Z = δ−1(0). If in the kth induction step of Theorem 3.8 we replace
the family of vector fields {vi(x), }i≤r by the new family of vector fields {ωi(x) =
δ(x)vi(x), }i≤r, then properties i), ii), iii) hold again for {ωi}i≤r, so the proof of 3.8
gives a complete vector field ζA which moreover vanishes on Z. Consequently its
time 1 flow Φk1 : A → A is a stratified homeomorphism which is the identity map
on Z.

Thus at each kth inductive step we obtain

W (k) ∩ Z = Φk1(W (k − 1)) ∩ Z = Φk1(W (k − 1) ∩ Z) = W (k − 1) ∩ Z ,
and since this holds for each k = 0, . . . , n (see also Remark 3.10), we can deduce
that

W ∩ Z = W (0) ∩ Z = · · · = W (n) ∩ Z = W ′ ∩ Z .

�
In the remarks below we use the notation of Theorems 3.8 and 3.9.

Remark 3.10. The final deformation W
Φ≡W ′, such that Φ1(W ) is transverse to V

in A, is the composition {Φt = Φnt ◦ · · · ◦Φ1
t : A→ A}t∈I , where for each k ≤ n, Φk

is a transversalising isotopy in S = Ak − Ak−1 constructed in the kth step of the
induction.

Moreover, {Φkt : A → A}t∈R is a one-parameter group of stratified homeomor-
phisms of A, the flow of the stratified vector field ζkA(x) on A.

Remark 3.11. The map f = ψb1 : S → S, transversalising in S = Ak − Ak−1, is
obtained as the time 1 flow of the vector field ζb(x) =

∑r
i=1 bivi(x) on S whose

parameter b = (b1, . . . , br) ∈ B = B(0, 1) is chosen outside a measure zero set
M ⊆ B(0, 1) ⊆ Rr. Since b may be chosen arbitrarily close to 0 in Rr, the vector
field ζb on S may be taken to be arbitrarily small and its global flow {ψbt : S → S}t∈R
becomes arbitrarily close to the identity map 1S . The same arguments apply for
each k ≤ n to the extension Φkt : A → A of the kth inductive step, and hence for
the final transversalising extension Φt = Φnt ◦ · · · ◦ Φ1

t : A→ A.
In conclusion, as stated in Theorem 3.8, the transversalising stratified homeo-

morphism Φ1 : A→ Amay be constructed so thatW ′ = Φ1(W ) lies in an arbitrarily
small neighbourhood U of W in A.

The (b)-, (c)-, (w)- and (L)-regular cases.

Remark 3.12. K. Bekka has shown [2], [3] that (c)-regular stratifications admit a
system of control data; so both (b)-regular and (c)-regular stratified sets are abstract
stratified sets, and hence Theorems 3.8 and 3.9 hold for them.

If X is a (w)-regular or (L)-regular stratification, it has particularly good lifting
of vector fields [6], [29] assuring important properties such as local topological
triviality [29], [34], but may have no system of control data defining an abstract
stratified structure. Therefore the statement in Theorem 3.8 is not convenient
for such stratifications. Fortunately the proofs of Theorems 3.8 and 3.9 are more
general than their statements, and still work with a slight modification.

If X is a subanalytic (w)-regular stratification of a subanalytic set, then it does
admit a system of control data, because it is then (b)-regular [15], [34]. This is also
the case for definable sets in o-minimal structures [16].
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Theorem 3.13. Let X = (A,Σ) be a (w)-regular stratification of a closed subset of
a smooth manifold M , and let V be a substratified object of X . Given a substratified
object W of X , and an open neighbourhood U ofW in A, there exists a deformation
by isotopy W ′ of W which is transverse to V in X and such that W ′ ⊆ U .

Moreover if Z is a closed subset of A at each point of which W is transverse to
V, one can obtain W ′ ∩ Z =W ∩ Z.

Proof. The proof is almost the same as that of Theorem 3.8.
The same proof works for step 1. In step 2, to define “the continuation” W (k)∩

(A − Ak), we extend the transversalising diffeomorphism f : S → S to higher
strata so as to obtain a stratified homeomorphism of A which is a diffeomorphism
of each stratum. This is possible because every vector field having a global flow
on a (w)-regular stratification admits a stratified (w)-regular lifting on the higher
strata having a global flow (not necessarily controlled in this case) [34]. �

Remark 3.14. Because (L)-regular stratifications are (w)-regular [29], Theorem 3.15
holds also for Mostowski’s (L)-regular stratified spaces.

Remark 3.15. Remarks 3.10 and 3.11 apply also to (w)-regular stratifications.

One can ask: “Is there a deformation W ′ of W such that W ′ ∩ V and W ′ ∪ V
have induced natural stratifications?” That is, denoting by C(H) the connected
components of a space H , take the partition in smooth manifolds of W ′∪V defined
by

ΣW ′∪V =
⊔

W ′α⊆W
′ ,Vβ⊆W

(C(W ′α − Vβ) t C(Vβ −W ′α) t C(W ′α ∩ Vβ))

and consider the following questions:
i) Is there a deformation by isotopy W ′ of W such that the partition ΣW ′∪V of

manifolds satisfies the frontier condition?
ii) Is there a deformation W ′ of W transverse to V such that for each pair of

strata W ′α , Vβ of W ′ and V respectively, the intersection W ′α ∩ Vβ is locally finite
in W ′ ∪ V ?

If so, then ΣW ′∪V would be the natural induced stratification of W ′ ∪ V , and

ΣW ′∩V =
⊔
α,β

C(W ′α ∩ Vβ)

would be the natural stratification of W ′ ∩ V .
Figures 1 and 2 show simple examples of substratified objects V andW transverse

in X for which the difficulties i) and ii) are present. In Figure 1 the “frontier
condition” fails, while in Figure 2 “local finiteness” fails.

We conclude the section by showing, in Examples 3.16 and 3.17, that the answer
to both questions i) and ii) is no.

Example 3.16. The answer to question i) is no, i.e. it is not possible to obtain in
general that W ∩t V or W ∪t V satisfies the frontier condition.

Proof. Let us consider as ambient stratification X the Euclidean space R3 stratified
with two strata by Σ = {X = S1 × {0}, Y = R3 − X}, where S1 = {(x, y) ∈
R2 | x2+y2 = 1 } is the unit circle of the (x, y)-plane. Choose as substratified object
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Figure 1.

Figure 2.

W of X the cylinder W = S1 × [0,∞) stratified with two strata by ΣW = {X =
S1×{0}, C = S1× (0,∞) }, and take for V the closed Moebius band M obtained by
a half rotation around the circle X of the closed segment QP with Q = (0,−1,− 1

4 ),
and P = (0,−1, 1

4 ), and stratified by ΣV = {X, ∂M,M − (X ∪ ∂M) }.
Then W ∩X = X and V ∩ X = X are obviously transverse in X , and after a

slight deformation near P , W ∩ Y and V ∩ Y are transverse in Y , so W and V are
transverse in X . On the other hand, as C ∩∂M = {P} and C ∩

(
M − (X ∪∂M)

)
=

the open segmentQ′P with Q′ = (0,−1, 0), thenW∩tV = {X,Q′P, {P} = C∩∂M}
does not satisfy the frontier condition, because the two strata X and Q′P do not.
Moreover, for any other (transversalising) deformation by isotopy W ′ of W the
same obstruction appears. �

Example 3.17. The answer to question ii) is no. Thus our result is the best
possible.

Proof. Let us consider for X the Euclidean space R3 stratified by the two strata
Σ = {X = x-axis, Y = R3 −X}.

To define two convenient substratified objects W and V of X , consider an open
spiral S of the coordinate plane (y, z), turning infinitely many times around the
origin, defined in the polar coordinates of the plane (y, z) by S = {(ρ, θ) | ρ =
h(θ) , θ ∈ (π2 ,∞) }, where h(θ) is a positive strictly decreasing function satisfying
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Figure 3.

limθ→∞ h(θ) = 0 (choosing h(θ) appropriately, one can obtain spirals with a desired
type of regularity).

Let us consider forW the regular substratified object of X whose support is the
product R× S ⊆ R3 stratified by ΣW = {X = R× 02 , α = R× S} (which inherits
the same regularity as S).

To define a convenient substratified object V of X , we first define a “double
spiralling” curve S′. Take a closed tubular neighbourhood N(S) of S of strictly
decreasing radius r tending to 0 near the origin, and starting from a point in ∂N(S)
consider a spiral S′ in ∂ N(S) turning infinitely many times around S (one can also
obtain without much difficulty a given regularity for S′).

The spiral S′ has the following special property: for every plane α′ containing
the origin O, α′ ∩ S′ contains an infinite sequence of points which accumulate near
O, and the same property holds by taking for α′ (a germ of) an open half-plane
near 0.

In fact, since α′ ∩ S is an infinite set of points {dn}n accumulating near O, then
α′ ∩N(S) =

⊔
nDn is an infinite union of pairwise disjoint topological closed balls

Dn, with dn ∈ Do
n, and on the boundary of each Dn lies a point cn of the double

spiral S′. Thus S′ ∩ α′ ⊇
⋃
n{cn}, and the sequence {cn}n accumulates near O.

Take for V the substratified object of X stratified by ΣV = {O,S′, S′′}, where
S′′ = {tu | t ∈ (0,∞) }, with u ∈ R3 − S an arbitrary open half-line of R3 − S
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Figure 4.

not meeting S′ (for this it suffices to choose S′′ not meeting N(S), because S′ ⊆
∂ N(S) ⊆ N(S)).

In this setting there is no deformation by isotopy W ′ = Φ1(W) of W for which
W ′∩tV is locally finite. In fact, in the lower stratumX of X we haveW∩X = X and
V ∩X = {0}, so W and V are transverse in X . In the higher stratum Y = R3 −X
of X we have

W ∩ V ⊇ α ∩ S′′,
and hence W ∩ V is clearly not locally finite, and moreover every deformation Φ1

of Y = R3 −X , putting α in a position of locally finite intersection with S′′ near
O, has to deform α into a germ of a half-plane α′, necessarily meeting the double
spiral S′ in an intersection which is not locally finite. Then for every deformation
by isotopy W ′ of W, W ′ ∩ V is not locally finite, and this also automatically holds
for W ′ ∪ V .

Examples 3.16 and 3.17, show that transversality Theorems 3.8, 3.9 and 3.13 are
the best possible results in the stratified C∞ category. �

4. Transversality of stratified maps

In this section we generalise our previous results to transversality of stratified
maps.

In this stratified transversality theorem (Theorem 4.4) we deform a stratified
map h : Z → X to make it transverse to a fixed stratified map g : Y → X .

Definition 4.1. For a pair of stratified spaces Y,X denote by SM(Y,X ) the set of
stratified maps h : Y → X . Let h, h′ : Y → X be two elements of SM(Y,X ). We say
that h′ is a deformation by isotopy of h in X when there exists a stratified isotopy
Φ : X × I → X such that Φ0 = 1X and h′ = Φ1 ◦ h , i.e. h′ is the deformation via

Φ and at time t = 1 of h. Then we write h
Φ≡ h′.

Deformation by isotopy in X is an equivalence relation on the set SM(Y,X ).
If Φ : A × I → A is a stratified isotopy of X = (A,Σ) and h ∈ SM(Y,X ), then

for each t ∈ I the map ht = Φt ◦ h ∈ SM(Y,X ) is a deformation by isotopy of h in
X .

Definition 4.2. Two maps h, g ∈ SM(Y,X ) are said to be transverse over the
k-skeleton Xk (or Ak) of X when for each stratum S of Xk their restrictions to S
are transverse in S. More precisely, given strata P and Q of Y such that h(P ) ⊆ S
and g(Q) ⊆ S, the restrictions h|P : P → S and g|Q : Q→ S are transverse.
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The lemma below is the version for maps of Lemma 3.5, and is easy to prove:

Lemma 4.3. Let S be a C1 manifold, let f ∈ C1(S, S), and let h : P → S and
g : Q→ S be C1 maps defined on C1 manifolds P and Q.

If the graph Γf of f is transverse to (h× g), then f ◦ h is transverse to g.

We can now state

Theorem 4.4. Let X = (A,Σ) be an abstract stratified set, or a (w)-regular strat-
ified subset of a manifold, and let g : Y → X be a stratified map.

Then for each stratified map h : Z → X and each open neighbourhood U of h(Z)
in X , there exists a deformation by isotopy h′ of h in X which is transverse to g in
X and such that h′(Z) ⊆ U . If C is a closed subset of X on which h is transverse
to g, then one can obtain that h′ = h on C.

Proof. We adapt the proof of Theorem 3.8. By induction on the dimension k ≤
n = dimX of the k-skeleton Ak of A we construct a chain of n deformations by
isotopy of h:

h = h0 Φ1

≡ h1 Φ2

≡ · · · Φn≡ hn = h′

such that hk is transverse to g in Ak for every k = 0, . . . , n, and hk|C = h|C .

Let k > 0 and suppose that a chain h0 Φ1

≡ h1 Φ2

≡ · · · Φk−1

≡ hk−1 has been
constructed.

By the inductive hypothesis hk−1 is transverse to g in Ak−1, so we define the
restriction of hk to Ak−1 to coincide with hk−1. As in Theorem 3.8, we complete
the proof by deforming hk−1 without changing it on Ak−1 and C.

Step 1 : Deformation of hk−1
|[Ak− Ak−1] .

We can suppose that S = Ak −Ak−1 is the unique connected k-stratum of X .
Consider the family {Wα}α of all strata of (hk−1)−1(S), and for each α let

hα : Wα → S be the restriction of h to Wα. Similarly, write {Yβ}β for the strata
of g−1(S) and gβ : Yβ → S for the restriction of g to Yβ for each β.

Step 1 may be deduced in a way analogous to step 1 of Theorems 3.8 and 3.9,
where we replace the restrictions WS and VS of the substratified objects W and V
by the restrictions hS and gS of the maps h and g. If we denote by j0f the graph
map of f , then the set

Mα,β =
{
b ∈ B

∣∣ j0f is not transverse to (hα × gβ)
}

has measure zero in Rn, so the set M =
⋃
α,βMα,β has measure zero too.

With the same notation as in 3.8, choose b ∈ B−M and consider the diffeomor-
phism f = Ψb

1 : S → S.
Lemma 4.3 implies that f ◦hk−1

α is transverse to gβ for every α, β, and so f ◦hk−1
S

is transverse to gS . We then define hk = f ◦ hk−1, so hkS is transverse to gS .
Also f = id on Ak−1, so hk and hk−1 coincide on Ak−1, and (by the inductive

hypothesis on hk−1) f ◦ hkAk−1
is transverse to gAk−1 in Ak−1. Therefore f ◦ hkAk is

transverse to gAk on Ak = Ak−1 ∪ S, and this concludes the proof of step 1.
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Step 2 : Deformation of hk−1
[A−Ak] and conclusion of the proof.

In a similar way to step 2 of the proof of Theorem 3.8, using the same stratified
homeomorphism f̃ = Φk1 : A→ A we set hk = f̃ ◦ hk−1 .

The stratified isotopy Φk satisfying Φk1 |Ak−1
= idAk−1 , Φk1 |S = f , Φk1 = f̃ , we

deduce the “whole deformation” hk of hk−1 by defining hk = Φk1 ◦ hk−1 .
In fact we have

hk =


hk−1
Ak−1

on Ak−1,

f ◦ hk−1
S on S = Ak −Ak−1,

Φk1 ◦ hk−1
[A−Ak] on [A−Ak] ,

and this concludes the inductive step.
We complete the proof of the theorem by setting h′ = hn. Then h′|C = h|C . �

Suppose now, as in the transversality lemma of Goresky, thatW is a substratified
object of X , and that the map h = i : W ↪→ X is the stratified inclusion of W in
X , and consider the map h′ = Φ1 ◦ h. Because the transversalising deformation
Φ1 is a stratified homeomorphism, and hence is a diffeomorphism on each stratum,
by Lemma 4.3 the condition “h′ = Φ1 ◦ h is transverse to g” may be reread as
“W ′ = Φ1(W) is transverse to g”. Thus we have the following corollary, which
generalizes the transversality lemma of Goresky, without the π-fibre condition on
the substratified object W to be deformed.

Corollary 4.5. Let X be an abstract stratified set, or a (w)-regular stratified sub-
space of a manifold, and let g : Y → X be a stratified map on a stratified space
Y.

Then for each substratified object W of X and each open neighbourhood U of W
in X , there exists a deformation by isotopy W ′ of W which is transverse to g and
such that W ′ ⊆ U . Moreover, if C is a closed subset of X on which W is transverse
to g, then we can obtain that W ′ ∩ C =W ∩ C.

Proof. An immediate application of Theorem 4.4. �
Remark 4.6. The analogies of Remarks 3.10, 3.11, 3.12, 3.14, and 3.15 concerning
respectively Theorems 3.8, 3.9 and 3.13 apply also to Theorem 4.4 and Corollary
4.5.

Corollary 4.5 holds for stratifications and stratified maps that are more general
than those of the transversality lemma of [12]. For we do not require

i) that g be controlled with respect to two fixed systems of control data T1 and T2

respectively of Y and X , or that g be the restriction of a smooth map g̃ : M1 →M2

between two smooth manifolds containing respectively Y and X ;
or
ii) that W satisfy the π-fibre condition.
The π-fibre condition is a very strong restriction on the geometry of the sub-

stratified objectW of X , and ensures that (b)-regularity is preserved, as was shown
in [12]; possibly other regularity conditions are preserved. For example, this is the
case for (a)-regularity, but it could also be true for (w)-regularity or (c)-regularity.

In Corollary 4.5, as we do not consider any regularity condition for W other
than being a substratified object of X , the problem of the preservation of such a
condition by deformation by isotopy does not arise. We devote the next section to
this delicate problem.
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5. Preservation of regularity

for the deformed substratified objects

If the transversalising stratified isotopy of Theorem 3.8 is “semi-differentiable” (a
notion intermediate between continuity and differentiability for stratified maps due
to the first author [24]), the transversalising stratified homeomorphism Φ1 : X → X
preserves (a)- and (c)-regularity of the substratified objects of X as follows.

Recall that conditions (a) and (b) of Whitney, and (c) of Bekka, are preserved
by C1-diffeomorphisms [33], [3].

Definition 5.1. Let X and X ′ be (a)-regular stratified spaces in smooth manifolds
N and M respectively. A stratified map f : X → X ′ is called semi-differentiable at
x ∈ X iff for every stratum Y > X (Y ⊇ X) and for each sequence {(yn, vn)}n ⊆
TY converging to a point (x, v) ∈ TX we also have limn→∞ fY ∗yn(vn) = fX∗x(v) .

Since f is a stratified map, there exist strata X ′ and Y ′ of X ′ such that f(X) ⊆
X ′ and f(Y ) ⊆ Y ′, and moreover Y ′ ≥ X ′ by continuity of f . Then by the frontier
condition X ⊆ Y ⊆ N and (a)-regularity, of Y and X it follows that TX ⊆ TY
and TX ′ ⊆ TY ′ with the topology of TN and TM respectively.

A map f is semi-differentiable on a stratum X (resp. on the whole of X ) if it is
semi-differentiable at each x ∈ X (resp. for every stratum X of X ) [24], [25].

If the stratified maps g : Z → Y and f : Y → X are semi-differentiable, then
f ◦ g : Z → X is semi-differentiable. A detailed account of semi-differentiability
and other similar conditions on stratified maps may be found in [24].

Proposition 5.2. Let X = (A,Σ) be a (c)-regular stratified space, and for the
isotopy Φ : A× I → A satisfying W ′ = Φ1(W) let Φ1 be semi-differentiable. Then

i) W ′ is (c)-regular if W is (c)-regular, and
ii) W ′ is (a)-regular if W is (a)-regular.

Proof. For every stratum R of W whose distance function is ρR : TR → [0,∞[, let
R′ = Φ1(R) be the corresponding stratum of W ′ and consider for R′ the distance
function ρR′ = ρR ◦ Φ−1

1 : TR′ = Φ1(TR)→ [0,∞[. Then the proof of i) reduces to
a simple verification, and a similar argument works for ii). �

Note that the distance function ρR′ = ρR ◦Φ−1
1 need not be C1, but it is contin-

uous. Therefore in statement i) of Proposition 5.2, (c)-regularity is weaker than
that of Bekka: take distance functions {ρR : TR → [0,∞)}R, smooth on each in-
tersection TRS = TR ∩ S with S ≥ R, and merely continuous on TR. However,
one can see that such a slight change (with respect to the original definition of
(c)-regularity) does not modify the validity of the property of continuous lifting of
vector fields, nor that of the first isotopy theorem.

As mentioned in the introduction, when X has a Whitney (b)-regular strati-
fication, to our knowledge it remains unknown whether semi-differentiability of
Φ1 : X → X suffices to ensure preservation of (b)-regularity.
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