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Abstract

In his Ph.D. thesis and in the paper Whitney stratified chains and cochains, M. Goresky intro-
duced, associated to each Whitney stratification X, a geometric cohomology theory WH™(X),
showing that there is a bijection R*: WH*(X) — H*(X). Subsequently, in 1994 1 improved
Goresky’s theory, by first introducing a group operation in W H BX ), geometrically defined via
transverse union of cochains in such a way that the representation map R* becomes a group
1isomorphism, and secondly by giving a geometric construction of the Steenrod squares.

In this paper, extending techniques and results of Murolo (1994), we complete the theory by
constructing geometrically (through the transversal sum), the Steenrod p-powers in the context of
Whitney cohomology W H™. A preliminary analysis explaining the Whitney cohomology of the
lens spaces L, = 5" /7, is necessary.
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1. Introduction

Cohomology operations were discovered by Steenrod while solving some problems
about extension of mappings between two polyhedra. Axiomatized by Cartan (squares)
and Thom (p-powers) they were generalized to the category of CW-complexes again
by Steenrod who introduced the homology groups of the symmetric group and gave
furthermore a “small” set of generators. Dold and Nakamura showed (separately) that the
cohomology operations correspond to the cohomology classes of an Eilenberg—MacLane
space, so establishing the connexion between the two different approaches (then known)
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to the theory. Many important applications of cohomology operations were given and
in different fields of algebraic topology, particularly by Thom to characteristic classes,
sphere bundles, cobordism theory and nonembedding theorems, and with the discovery
of the Adem relations in the Steenrod algebra, by Adem to fibrations on spheres and
certain cohomology and homotopy groups which are not zero. The main applications
were given to the stable homotopy of spheres, by Toda, who introduced some exact
sequences obtaining results on the p-primary components of the groups, and by Adams,
again on this subject, through his famous spectral sequence and Hopf maps. Most of
these results were collected and elaborated in [14] which became the first fundamental
reference.

Many papers then appeared, and about various problems: for reducing generators
(Cartan and Moore), finding bases (Chow), constructing dual homology operations (Wu
Ding-jia), introducing local systems of coefficients, and the question of giving concrete
constructions was considered in some particular cases. Thus particular constructions of
operations were given in different contexts: for simplicial spaces [16], for geometric
cohomology of a ball complex [2] (through mock-bundles), for intersection homology
groups of stratified topological pseudomanifolds [8], for subanalytic stratifications [9],
and more recently for de Rham cohomology [3} and [4], and for cohomology of simplicial
presheaves [10].

In this paper we consider the Steenrod operations in the context of the Whitney co-
homology of a Whitney stratification. Recall then briefly some notions about Whit-
ney cohomology. If X is a topological space equipped with a Whitney stratification,
in [12] I improved the theory defined by Goresky [7] (which had a precursor in work
of Whitney in 1947 [15] as Dold pointed out to me during the LC.M. Ziirich 1994)
by introducing in the cohomology set WH¥(X) (that I call Whitney cohomology) a
geometric sum operation in such a way that the Goresky “representation” (bijection)
R:WH*(X) — HF(X) becomes a group isomorphism. The set W H*(X) is a quotient
set, the cocycles of which are Whitney substratified cochains of X, and in which the
sum operation was defined (by me) at the representative level, via transverse union of
cocycles put in general position. Furthermore, with the same transverse union opera-
tion, the pull-back map f*: WH*(X,) — WH*(X) induced by a stratified controlled
map f:X; — X, (defined acting as transverse preimage V — f~'(V)) turned out to
be a group homomorphism. In the last section I constructed geometrically the Steenrod
squares Sq*: WH® — W H**+2 for (such) Whitney cohomology.

In this paper we complete the theory of [12] showing that a geometrical construction
can be used to define the Steenrod p-powers P : W HF(X) — W HF2(e=1 (X)) (p > 2
and prime) in Whitney cohomology.

Our techniques, based essentially on transversality, are well adapted to this geometric
construction so that it turns out to be very simple to verify the axioms (except for P = 1).
The theory of the p-powers is in general more complicated than that of the squares, so
some preliminary analysis is necessary, which constitutes the content of Section 2 and
Section 3. More explicitly, in Section 2 we study Whitney cohomology WH*(L,) of
the lens space L, = S"/Z, giving a Whitney cocycle generator of WH7(L,) for each
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dimension j, while in Section 3 we examine some interesting relations about two different
Zy-actions on the p-sphere SP. Finally in Section 4 we define the homomorphisms
P WHF(X) » WH (=1 (X) and show that they verify the axioms.

I wish to thank S. Buoncristiano for many helpful conversations regarding both the
present paper and the previous one [12]. I also thank C. McCrory and D.J.A. Trotman
for their encouragement and advice.

Some notations

(1) All rings of coefficients (always omitted) will be the fixed field Zy, of the integers
modulo p (p an odd prime);

(2) for each space X we associate to the product space X* = X x -+ x X (p times)
the free Zp-action A which cyclically permutes the coordinates:

A:XP 5 XP, Alxy,...,zp) = (Zp, &1, .-, Tp_1);

(3) we consider only spheres 5" having odd dimension h, consequently there is asso-
ciated to the standard embedding S* < C™*!, m = (h — 1)/2, a natural free Zp-action
on S defined by

T:8" = Sh T(z0,...,2m) = (A20,..., A2m),

where A\ = ¢2™/P_ we then have the lens quotient space L, = Sk /7., whose Whitney
cohomology is explained in the following;

(4) the product space XP x S" is automatically endowed with the free Zp-action AxXT
in such a way that for every k-cocycle V C X the spaces (X?x S")/Z, 2 (VP x sM/Z,
define respectively a Whitney space and one of its kp-cocycles [7,12].

If X is a Whitney object, denoting by A the diagonal map

Ap:X x Ly = (XPx §")/Zp, Az, [t]) = [z....,2,1]

?

we have the induced homomorphism A* : W H*((XP x S")/Z,) — WH* (X x L,).
We mean to define the p-powers P* through the following steps:
(a) there is a well-defined map

o WHR(X) = WHR((X? x S"Y/Z,), @([V]) = [(VP x $")/Zy]:
(b) the class

A (VP x SM)/Z,) € WH (X x Ly) = > WHY(X) @ WH(L,)
i+j=kp
split by Kiinneth homomorphism has a component of degree o/ = k + 2a(p — 1) in
W H® (X) which we will choose in order to define P*([V]).

2. The Whitney cohomology of L,

The Z,-action T Sh —y §h defines a natural structure of cells on S” (see [14, Chap-
ter V, Section 5]) having p r-cells {eT}i<, for every fixed dimension r < h and each
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of them is transformed into any of the remaining through the (p possible) applications
T =id, T',..., TP~

Therefore the quotient space Lg = S"/Z, has a cellularization with a unique cell e”
in each dimension 7 < h, and it is known [14, Theorem 5.2], that if Ey, ..., E, are the
cohomology classes of the dual cochains of the cells e” then H"(L,;Z,) is isomorphic
to Zp, and generated by E.:

H"(Ly: Zp) = (Er) = Ly
Moreover for the generators E| and E; the following relations hold
B Eyy = E} if 7 = 2n is even;
" Bt = EF- By if r=2n+41is odd.

Thus we can find a generator of H"(Ly,) Vr 2> 1 through their cup product.
Here we will find geometric cocycles which generate W H"(S" /Z,)) showing that they
are represented by some ““coordinate sphere” which respects the Zy-action.

Proposition 1. The 2-cocycle (0% x Sh"z)/Z,J represents the class of a generator E; of
W H?(S"/Z,) and any other (h — 2)-coordinate sphere of C™+' = R"*! represents the
same cohomology class E.

Proof. We start by noting that (0° x S')/Z, is not the zero 2-cocycle in S*/Z, and
that the inclusion map I : S*/Z, — S"' /7, I{[z]) = [(z,0)] induces an isomorphism in
cohomology. This is easy to verify in cellular cohomology and thus through the bijection
R:WH* =~ H* (see [7] and [12]) it holds in Whitney cohomology.
Therefore using the isomorphism I*: WH?2(S"/Z,) — WH?(5*/Z,) we find by
transverse preimage
I ([(0% x 8" /2,]) = [I7H((0% x $"72) /)| = [(0° x §") /2]
and then (02 x S"=2)/Z, is a cocycle generator for W H?(S"/Z,).
Now if K is the diffeomorphism
K: Sh/Zp — Sh/Zp, K20, s zm] = [2Zm, 20, -+, Zm_1]s

we must show (that) also (0> x S"=2)/Z, = K7((0* x S"2)/Z,) are cobordant cocy-
cles, for each j, as follows by the next lemma.

Lemma. The induced isomorphism K*: W H?*(S"/Z,) — WH?(S"/Z,) is the identity
for every m < h. Consequently each power K7* = K*J |s the identity map.

Proof. We prove that the cocycles
K*((07 x S"7%) /Zp) = K~ ((0* x §"7%)/Zp)
= (S"_2 x 0%) /Z, and (0% x S}"’Z)/Z,}

represent the same cohomology class showing how we can construct a Z,-equivariant
cobordism V : 02 x §h=2 = §h=2 x (0,
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Let us interpret the 3-sphere S as the join on R*
§'=S x 0% 0 x S
= {t(zo,Oz) + (1 —t)(()z,zl) = (tzo,(l - t)zl) | 20,21 € Sl te [0, 1]}
then the homotopy
F:S'xI =8 F(zt)= (tz,(1 — t)z),

verifying obviously F(T x 1) = T'F, respects the Z,-action, and its image V = F(S' xI)
is just the T-equivariant cobordism between S' x 0? and 07 x S' in S*.

Considering similarly S* = S?m+!1 = §' » ... 4« S (m + 1 copies), this procedure
shows that (02 x $"=?)/Z,, = (S"~2 x 0*}/Z,, are cobordant in S"/Z,,.

Proposition 2. A generator E»; = E} € WH?*(S"/Z,) is represented by the 2i-cocycle
(0% x Sh_2i)/2p. Moreover any other h — 2i coordinate sphere represents the same
cohomology class. In particular Ep_, = [(0°" x S")/Z,).

Proof. With the map K : S"/Z, — S"/Z,, (as in Proposition 1) we have
i—1
(0% x $"=2) 2z, = [ K7 ((0* x $"2)/Z,),
i=0
where intersections are two by two transversal in S”/ZP.
So, since in Whitney cohomology the transversal intersection is the cup product, we
find the following equalities of cohomology classes:

i—1 i—1

(07 x 872 /Z,] = | (K7 ((0° x §"72)/Z,) | = [ [K7 (07 x §"7%)/Z,)).

J=0 7=0
On the other hand the diffeomorphisms K7 are transversal to each cocycle and thus
the last member (using also the lemma) is equal to

i

1 i—1

[ )T (07 x 8777 2y) ] = L K 7[00 812 /2,

J
i—1
=[] B = B = B
j=0
The second statement holds immediately because, again by the lemma, we find
[Kj((oli « Sh—lz’)/ZP)] — Km-y‘—l—j*([(oh’ « Sth'L)/ZP]) _ ld(Ezl) — By,
3. Equivalence of Z,-actions on lens space

Here we show some relations between different Z,-actions which acting on the p-
sphere S define the same lens subspace.
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We consider the rotation map of angle § = 27 /p
T :R* = R, Ti(z) =Xz, A=¢e2™f,

which is an isomorphism (of order p) of the complex vector space, and so also are the
product maps

T =Ty x---xTy (stimes) and Q=T xT}x---x T}

from RP~! onto itself, s = (p — 1)/2.
Denote by

ARP = RP, A(zy,...,2p) = (zp, 21, ..., Zp_1),

the other isomorphism which rotates the real coordinates; we will show that there is a
diffeomorphism of quotient spaces

SP2IT' 2 SP2jQ = SPT2A

where Slp—2 is a convenient (p — 2)-sphere contained in the antidiagonal hyperplane A~
of RP.

Lemma 1. There is a norm-preserving diffeomorphism G :RP™! — RP~! for which
QG =GT'

Proof. Representing complex numbers with exponential notation we define G as follows:
for each

27,

z={(z1,...,25) = {pre ,...,psezﬁiBS), pi 20, 8; €0, 1] for each 1,

Gl2) =G (o™, ... pct™)

2mif, 27\'i(91+92)

pae 0 ezﬂ’i(91+9z+--'+95))
b PR | 8 -

= (Ple

Then it is immediate to show that GT' = QG and that G is bijective having as inverse
the map

F(p.emg'....,psez’”eﬂ _ (plezmel.pzezm(ez—el). o ’psezm(é)s—esf.l))_

The lemma below could be expressed in the language of group representations as the
(standard fact of the) irreducible decomposition of the regular representation of Z,, (see
[5, Section 9, Example 2]). We intend that the proof of the lemma we give is helpful in
explaining the geometric meaning of those Z,-equivariant spaces occurring in Section 4.5
and in particular of those which we construct in the proof of Proposition 3.

Let A™ = 1({A(RP),RF) be the hyperplane of R? orthogonal to the diagonal line
A(RP); this is therefore a subspace equivariant with respect to the Z,-action A and
verifies:

Lemma 2. There is an isomorphism H:RP™' — A~ of real vector spaces such that
AH = HQ.
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Proof. Subtracting from the standard basis e),...,e, of RP its barycenter § =
(1/p,...,1/p), we have a new system of vectors {a; = e; — 6} neglecting any one
of which we find a basis of A~ such that A(e; — §) = e,41 — 4 or also equivalently
ei—y — 6 = A*"'(e; — &). Therefore these properties still hold for its normalized system

2= {u,A(w),..., A" (u)}.

Let now e = (0, 1) be the imaginary unit and E the vector E = (e,...,e) € C*.
The system X = {E,Q(E),...,QP~'(E)} verifies the same properties as {2 in such
a way that we can define the isomorphism H on the basis elements setting

H:RF' 5 A™, HQYE)=A'(u) foreachi=0,1,...,p -2

so that automatically also HQP~!(E) = AP~!(u) holds. It is only necessary to note that
the vectors

E=(e,....e), QE)= (AN, .. 0%, ., QP XE) = (W72, A=)

are linearly independent in the real vector space RP~!.

If N is the following matrix, denoting by Z;, ..., Z; its complex vector columns
E
N = Q(:E) =(Z1,...,Zs)= (A, By,..., A, Bs),
Q'(B)

where Vi Z; = (A;, B;),

we will prove the R-independence of the 25 = p — | real vectors A;, B; in RP~1.
The Vandermonde matrix M = V(A A2,... AP~1)

e e e e e
Al 2 ... A . AP-l
M= X\ A\ ey
T D 1t R\ )

has the determinant det M = [],_, (A" — X) # 0, thus its columns, for which we can
set with slight abuse of notation

M=(2,....2,2",....Z;")

= ((A1,B1),..., (45, By), (A1, ~By), ..., (4,,— By))

are linearly independent as complex vectors.
Now every linear combination with real coefficients

a Ay +0 By + - +asAs +bsBs =0, a;,b; € R,
is exactly the first component of the following complex equation

MmZi+ -t asZs +ii 27+ i 207 = 0,
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Thus the R-independence of A;, B; follows by the C-independence of Z;, Zi_l.

Proposition. If Sf_z = H(SP"?) is the diffeomorphic image of the standard (p — 2)-
sphere in A™, then we have the following diffeomorphisms of quotient spaces

SPTR T > §PT2/Q > SPTE/A,

Proof. This follows immediately because by the commutativity of diagrams

Sp—Z_C_;_) Sp—Z_H_) S{)_ZQA_

Jd )

gp2—Co gp2 o g2 A=

the maps G and H can be factorized, defining diffeomorphisms between the quotient
spaces.

4. The p-powers P* in WH*(X)
4.1. The definition of P

If V is a k-cocycle of X, by the Kiinneth formula we have
AL((VP x S")/Z,) e WH(X x L) = > WH(X)® WH(L,)
i+j=kp
and since every WH?(L,) = (E,) is generated by E; we can write

kp
A5 (VP x SM)/Z,) =Y Di(V) x B

3=0
We now want to define
PYV) = D20y p—-1y (V)
Le., the component which appears together with E(;_24)(;,—1) in the previous factoriza-
tion, namely with cohomological degree
o' =kp—(k-2a)(p—1)=k+2a(p-1).
Thus the map P*:WH* — WH® will be by definition the composite function
P =prA*e
P W HR(X) L3 W HY (X7 x S")/Z,) S5WHF(X x L)XW HY (X),

where pr = pr,, is the Gysin homomorphism

o

Pro WHY(X x Ly) = ) WH'(X)® WH(L,) + WHY (X).
i+j=kp



C. Murolo / Topology and its Applications 68 (1996) 133-151 141

In what follows h € N can be an arbitrary odd number provided h > (k — 2a)(p — 1);
in the case h < (k—2a)(p—1) we find instead the vanishing of the designated component
since WH(’“_ZO‘)(P_')(LQ) =0.

Remark. By this definition we automatically will have
20> k=(k-20)(p-1)<0=a >kp= PYV)=0,

1.e., one of the axioms defining the Steenrod p-powers.

Proposition 1. The map
¢ WHN(X) - WH ((XP x §")/27,), » V)= [(VP x S")/Z,],
is well defined.
Proof. A cobordism (:V = V', between two cocycles V and V' of X, is a Whitney

k-cochain of X x [0, 1] which verifies (N X, = V x [0,e[UV'x]l —¢, 1] for some small
£ >0, where X = X x ([0,£[U]l — ¢, 1]) [7]. Considering then the map

B:XP xR —=[X xRP, Blx,...,2p,t) = (x1,t,...,2,,1),
the restriction of 3 to X? x ([0,e[U]1 — ¢, 1]} is transverse to
(V x[0,e)? U (V'x]l —e,1])"
therefore, in the same way as in the (inductive step of the) Transversality Lemma 5.3
[7], we can deform {, without moving it in X, in such a way to obtain a new k-cochain
8 of X x [0,1] such that 3 is transverse to 67.
Since # coincides with ¢ in X, then 8:V = V' is a Whitney cobordism and then so
is g=HeP): VP = V'
On the other hand, for all strata Vi,...,V} of 6,
A BTV X x V) = 87 (Vs x o x Vpx Vi x - x Vi)
Vi=1,...,p
holds, by which we conclude that 37'(6P) is an Z,-cquivariant cobordism between V7
and V', and then so is (37'(67) x S*)/Z,, between (VP x S")/Z, and (V'¥ x S")/Z,.
Proposition 2. The definition of P* does not depend on h = (k — 2a)(p — 1).

Proof. If b’ = h = (k — 2a)(p — 1), then denoting by
i:sh sV r.shz, - sz,

respectively the natural embedding of spheres and the induced map on the quotient
spaces, since (1x» X i)z, Ay = Ap(1x x I) by transversality we have

A5 (VP % SM) [ Zp) = 85, ((xr x )7 (VP x S7)/2,))
=(1x x I)* A5 (VP x SY)/Z,).
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Thus writing the images of the maps A} and A}, through the Kiinneth formula and
applying 1% x I* to the right-hand side by the uniqueness of the splitting in

> WHY(X)® WH(L,)
i+j=kp

we find

’

D?k—Za)(p—l)(V> = D?k—Za)(p—l)(‘/)

(note that E'J’v1 = I*(E;”/)) as required to be proved.
We will now show that the axioms hold.
4.2. Functoriality

We recall that the nice morphisms in the context of Whitney stratifications are the
controlled maps f [11,7], for which the induced map f* exists in Whitney cohomology
[7] and is a group homomorphism [12].

Proposition. If f: X — Y is a controlled map between the Whitney spaces X and Y,
then P* f* = f* P,

Proof. Defining the map
g: (XP x S")/Zy — (Y7 x Sh)/Zp, glz, .. x,z) = [f(z), ..., flx),z],

to each cocycle V of Y which is transverse to the map f there corresponds the cocycle
VP x S"/Z, which is transverse to the map g, and since gAx = Ay (f x 1) we deduce

then the commutativity of the diagram
wHk(y) —— WH*P (VP x S")/Zy) A WHF(Y x L) ——> WH (V)
I g*l (le)*i lf’
WHE(X) —"—= WH ((XP x §7)/Z,) —2> WHEP(X x L) ——> WH (X)
where pr A*p = P so P*f* = f*P<,
4.3. Homomorphism
Proposition. Each map P*: W H*(X) - WH® (X) is a group homomorphism.

Proof. Since P® = pr A*y where the map pr is the Gysin homomorphism it is sufficient
to show that the map A* is an homomorphism too. This will be true if and only if for
every pair V, V' of k-cocycles transversal in X, the relation

A (VU VP x SM/Z,) = A" (VP x SM)/Z,) + A (VP x S")/Z,)
holds.
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We start showing that for the transversal union we have easily

p—1
Vu VP =vru,vPul ) U:+U, )
i=1
where U =V -V U =V'—-V and U; * U;,_,i is the union of all the products in
which V' appears i times and V' (p — i) times. Consequently we have the equality of

cocycles

p—1I
(VUVyP=VvPuv?+ | J(Ui«U, ).

i=1
These considerations still hold after multiplication by S" and factorization modulo
Zp-action; therefore we find

p—1
(VUVYPx SM/z, = (VP U V") x SY)/Z, + < Jwexu,_,) x S") /L.

=1

Now considering the new stratification (refinement) of X? x S"/Z, given by
(X7 x §7/Z,) = ((XP — d(X)) x §")/Z, U (d(X) x S*)/Z,,

i.e., in which for each stratum S of X the “diagonal submanifold” (d(X) x S")/Z,
is considered as a new stratum, where d: X — X7 is the diagonal map, we have the
commutative diagram

X % Ly —2 [(X7 x §")/2Z,)

S o

(XP x S")/Z,

and so

p—! p—1
A (( Jw=u,_,) % 5h> /ZP) =A*I* << (UixU,_,) % Sh) /ZP)
=1 pi—:ll
(U ) )

d-! (U(Ul * Ué#l)):l x Ly =0,

=1

where for each i, d ' (U; U/ _;) = union of (*) cochains which are cobordant in X = 0
(mod p).
Thus we can conclude since

A (VU VP x 8™ /z,) = A (VP U VIP) x SM)/Z,)

+ A <<U{Ui * U’y x Sh) /Zp>

i
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(l

A (((VvP U V') x M /Z,)
A (VP x 8"z, U (VP x SM)/Z,)
A (VP x $M)/Z,) + A (VP x S")/Z,,).

4.4. Cup product

Proposition. If V is a k-cocycle of X and k = 2« then
peV)=[VIuViu---uV]

is the cup-product p times of the class [V).

Proof. With the diagonal maps d and A, and the projections g and p of the commutative
diagram

X><Sh¢“) prsh

| qu p

X x (8"/2,) —2= (XP x S")/Z,

we have (1 x ¢)*A* = (d x 1)*p* in Whitney cohomology.
Since the projection p is a local diffeomorphism (when restricted to each stratum) and
so is transversal to the cocycle (VP x S")/7Z,, we immediately have

P (V7 x 87 /2,)) = [ (V7 x 8)/2,)] = [V2 x 8]
Then
(I xq) A (VP x S")/z, ) =(dx 1)"p*((VP x §")/Z,)
(dx 1) [(VP X Sh')/Z,)]
=" x 1 (V] V] x [s"])
=d* (V] x [V]) [ ",
in such a way that expanding in the left-hand side the image of A* by Kiinneth’s formula,

and applying to it (1 X g)* = 1* x ¢* we find that the only nonzero term must necessarily
be the one having the component of degree kp = 2ap in X.

On the other hand this component is by definition just Do([V]), thus we conclude that

P(IV]) = Dgeaap-1y (V1) = Do([V])
= d*([V} X oo x [V]) = [V]U--- U[V] (p times).

4.5. P° = identity

Proposition 1. If X is a Whitney space, then P® = lw gk (x) s the identity map, for
each k.

Proof. This proof is given automatically substituting in 5.4 [12] the squares Sq0 with
the maps P for all spaces X,Y, X', X,,_; under consideration.
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Now when dim X = 0 the equality
A ([((P,...,Pyx SM)/z,]) = [A™(((P,...,P) x §")/Z,)]
=[P x (S"/Z,)] = [P) x [Ly]
implies D°([P]) = [P] and so P°([P]) = [P] (Step 3).

Therefore also in this case we reduce ourselves only to show that P°([P]) = [P] when
dim X = n, and again this is shown in the following separate proposition.

Proposition 2. If P is a point in any n-cell C™ of X, then
A ([((P,....PYy x $")/Z,]) = {P] x Eppy
and in particular P°({P]) = [P).
Proof. Let us identify C™ with R™.
Step 1. Denote with A = {(z,...,z) | z € R"} the diagonal space of (R™)” and by

U~ = L(A,R"P)} its orthogonal complement (having dimension n(p — 1)); we find first
that these spaces are A-invariant with respect to the Z,-action

A (]R")p — (R”)p, Az, ..., xp) = (Tp, X1y oo Tp—1)

which rotates the coordinates and that we have a natural diffeomorphism G of manifolds
and submanifolds

((RM)” x M) /Z, 2= (Ax U™) x SM)/Z, = A x (U™ x ") /Z,),

(P,....P)x SM)/Z, = ((P....,P) x (0,...,0) x ") /Z,
(P,....P) x (0" x §")/Z,).

1

Writing I: S"/Z, — (U~ x S")/Z,, for the O-section embedding we have a commu-
tative diagram

R™ x L, —2— ((R™)" x §")/Z,

dxT l('

Ax (U™ x Sh)/Zy)
in such a way that A*G™* = (d x 1)* in Whitney cohomology.
Hence
A ([((P,..., Py x SM)/Z,]) = A*G™ ([(P,...,P) x {(0P x §")/Z,)))
=(dx I ([(P....,P) x ((0° x S")/Z,)])
=d*([(P,....P)]) x I"([(0" x §")/Z,))
=[P] x I"([(0" x §")/Z,])

the last equality holding by transversal preimage through the map d: RS A.
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Step 2. I*([(O"P x §M)/Z,]) = Enp—1y, e, the former is just the generator of
WH™P=1)(L,) described in Section 2.
If we set then:
U,=U" = L(A(R"),R”p) = {(.1'1,...,.7;,,) c R"P
orthogonal to each (z,...,2) ¢ R"},

Uy =A" = L{AR),R?) = {(¢',...,6") ¢ R?
orthogonal to each (£,...,¢) € R”}

we easily find a natural isomorphism

g:Un“}Lrl XKoo X UI: g(mlw--:‘r[)) = ((6]]~a€;))’~(§r-7£;;))a

(where x; = ({}, ..., &) which can be quotiented verifying:
(1) the commutativity of the diagram

Lp= Sh/zp = (Un x S")/Z,,

dl ’
STy x - x STy IS (U % 8MY /T, x - x (U] % SM)/Z,
(2) g*([(0° x SM)/Zp x -+ x (0P x SM)/Z,]) = [(0" x S")/Z,] directly through
transversal preimage.
Thanks to this and since I ([(07 x §")/Z,]) = E,_; (see next Proposition 3) we
conclude that
L ([0 x M) /Zp]) = Lhg™([(07 x $")/Zy x -~ x (0P x S") /7))
=d (I} x - x I([(07 x M) /2, x - x (07 x §")/Z,])
=d (I ([(07 % $")/Zp]) x -+ < I ([(07 % §*) /Z)))
:d*(Ep_l X oo X Epvl)
=fp U U Ep*l = E;_l - En(p—l)-

Proposition 3. The O-section embedding Iy : S" /7, — (A~ x S")/Z,, verifies the rela-
tion IF([(0P x S")/Zy)) = Ep_1.

Proof. First of all we observe that we can suppose h = p and I, = r.s?/7, —
(A~ x SP)/Z,. In fact by the commutative diagram of embeddings

$P /2, (A= x S7) /2,
Il LI
"2, e (A x S)/2Z,
we find I7"J* = I*I"* where J* verifies also

T (O ") /2p]) = [J71((0 x §")/2,) 1 = [(07 x §7) /2,



C. Murolo / Topology and its Applications 68 (1996) 133151 147

directly by transverse preimage.
Theretore
1 ([(07 < 8" /z,)) = 1P T ({07 x 8M)/Z,]) = TP ([(07 x SP)/Z,])
and so we can conclude because I™* is an isomorphism verifying I*(EP )= E" -
Now we will prove
I ([(0° x SP)/Zp)) = Epey, e, IT([(OP x SP)/A X T]) = [(0°° x 5')/T]
(where T is the Zp-action defined in the introduction with h = p) directly determining a
cocycle U which is cobordant to (0P x §P)/Z,, transversal to I; and such that INU) =
(0% x §Y)/Z,.
Equivalently we shall determine a p-sphere V. C A~ x S” which is A x T-equivariant
in such a way that
(a) V = 07 x SP with an (A x T}-equivariant cobordism;
(b)Y V L 0P x SP (i.e., they are transversal in A~ x SP) and
VoY= SP =0P x 0% x S
Let then H:RP~' — A~ be the diffeomorphism with which AH = HT’ (see Sec-
tion 3 and observe that by h = p then T' = T’ x T} holds), and G the diagonal immersion
defined on each 2’ = (z9,...,2s-1) € C* = RP~! by
G:RF' = AT xR, G(Z) = (H(Z),2').

It is easy to verify that the map F = G x 1y and its restriction £: S — S"’_z x SP
are again Zp-equivariant: i.e., FT = (Ax T)F
Now the “diagonal movement” performed by the map F' on SP = 0P x 5P is such that
the p-sphere image V = F(S?) is clearly A x T-equivariant
(AxT)V)=(AxT)(F(57)) = FT(S?) = F(s?) =V.
In this way considering the homotopy B: 57 x I — A~ x SP,
B(z,f) = tF(z) + (1 = )(0, 2) = (tH().tz = (1 - 1)2) = (tH(). 2)
which again respects the Zy-action, the image B(S¥ x I} is the cobordism between V/
and 0P x S? as required in (a).
It is then easy to verify the condition of transversality and intersection (b).
In other terms this means that V is transversal to I, : ¥ — A~ x S and I['(V) =
02m X Sl.
Finally we conclude that

I ([(07 % 87)/Zy]) = LT (V/Zp)) = [I7 ' (V/Zp)] = [(0% x 8) /2, = Ep-r.
4.6. The Cartan formula

We start showing that in the Kiinneth expansion

A*((vP x SM)/z,) ZD (V) x E;
3=0
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the only nonzero components D, (V) are exactly those we selected to define the Steenrod
powers P*(V).
The characterization of A*(((P, ..., P) x S")/Z,) (see 4.5) implies the following

Proposition 1. For all j > k(p — 1) each map D; - WH*(X) — WH*=3(X) is the
null homomorphism. Then

k(p—1}
A (VP x§)/z) = Y DyV) x .
=0

Proof. This is identical to Proposition 3 of 5.4 [12], where we need only substitute the
maps R’ and R%, with the D; x and D; x, and the numbers r < k with j = k(p—1).

Proposition 2. If j is even, then D; (defined in WH*(X)) is nonzero only if j =
(k —2a)(p — 1) for some c.

Proof. Let f be the map on S (h = 2m + 1), defined through the rn + 1 complex
coordinates of z = (20,...,2m) = (poe”™%, ..., pe?™¥m) e Sh by

f . Sh = Sh, f(ZO, el Zm) — (poﬂlwiq(ﬂ)7 o ’pmeZﬂ'iqﬁm)

and T: S* — S" the Z,-action on S of Section 1.
Since it is immediately verified that fT° = TP f, then f can be factorized defining a
map on the lens space L, = S*/Z,

g:Sh/Zp - Sh/Zp, glz] = [f(z)}
Now recalling that each group W H(L,) = (E,) = Z,, has the generator
B E} if 7 = 24 is even,
7\ ELCE) if j=2i+ 1is odd,

we have g*(E;) = qE, in WH?(L,) for some generator g of the multiplicative group
Z3 = Z, — {0}, and so we find that for all j = 2i even, g*(E;) = ¢"E; holds.
On the other hand by the commutative diagram

XxL,—9 o XxIL,
)| |5
[1x4)

(x7 x 57z, L (xe sty /2,

we find (1 x g)*A* = A*[1 x f]*, with [I x f} a local diffeomorphism verifying the
transverse preimage relation of sets [1 x f]~'((V? x S")/Z,) = (VP x S")/Z,, for all
k-cocycles V of X.

Then we can write

1 A ([(V7 % $)/2,]) = BV x 5 /2]

where ( is the multiplicity of preimage, for which we will show that 3 = qks.
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In fact substituting in
(1% g)* A (VP x §")/Z,) = BA* (VP x §")/Z,)

the formula of the previous lemma

k(p—1
A (xS = S D%,
j=0
we immediately have
k{p—1) k(p—1)
> Di(V)xg'(By)= D Dy(V)xBE;
4=0 3=0

and thus, for each j
D;(V) x g*(E;) = D;(V) x 5E;.
Now the last relation can hold only when both members are null and hence D, (V) =0
or D;{V) # 0 and ¢*(E;) = 3E;. Therefore since P° = id and hence D,(CIE;_I)(V) #0
we deduce that

BEwp—1) = 9" (Erp-1y) = 9" (Bas) = 4" Boks = " Expy

and so 3 = ¢*.
Finally if j = 2i is even, by g*(E;) = q** E; we conclude that the only D;k)(V) not
necessarily zero occur when

¢' = ¢ (modp) < ¢ = l(modp) @ ks —i=alp—1)si=ks—alp-1)

for some integer «, i.e., just when

j=2i=2ks—2a(p-1)=kp-1)—2alp—1)=(k-2a){p—1).

Remark. We could similarly show for completeness (although this is not necessary) that
for j odd D;(V) is not necessarily zero only when j = (k — 2a)(p — 1) — I, for some
integer a.
Theorem. For every V. € WH?(X), every V! ¢ WHY(X) and for all i we have
PV x V)= Y PYV)xPY(V').
a+B3=i
Proof. Denoting by f, g, A, d, Inv the following diagonal maps
FiX XLy = (X x L)%, f(za,[2]) = (2,2], 2", [2]),
£ 3 2
g: (XD x 8M) /2y — (X7 x $")/Z,)",
Zp, 2

glar, 2l ... 2p, T, 1= {([z1,-..,zp, [z, 7, 2]),
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A =Ax: X x L, - (X)) x $")/2Z,,
Az, 2 [2]) = [(z,2'),..., (z,2"), 2],
d: Ly = (Lp)?,  d([z]) = ([2], [2]),
Inv: X% x (Lp)* = (X x Lp)?,  Inv(z,2’, (2], [2']) = (= [2]. 2, [¢]).
it is easy to see that
(@) (A x A)f = gA’ and consequently f*(A x A)* = A g™,
(b) f = Inv (I x2 X d) and similarly f* = (1 x d)*Inv";
(©) g*((VP x SMY/Z, x (VP x SM)/Z,) = ((V x V')P x §")/Z, which holds directly
through transverse preimage.
So first of all we have

A (((V x V'Y x SM/Z,) = A g (VP x S") /2y, x (VP x S")/Z,)
= (A (VP x §")/Z,) x A (V" x S")/Z,)).
Then by the Kiinneth formula, expanding both images of A~
a(p—1}

AT (VP x s /Z,) = Y D;(V) < B,
§=0
b(p—1}
AY((VvPx sh)/z,) = > DV x E,
1=0
we also find

(A (VP x 8" /z,) x A*((V'P x §")/Zy))
a(p—1) b(p—1)

Z Z I x d)*Inv*(D;(V) x E; x Di(V") x E})
j=0 =0

(a+b)(p—-1)

= > N (—EIDV) x DUV x dT(E; x Ey).
v=0

JHl=v
Now recalling that all cocycles E; are generated by the cup products of the single
cocycles E, and E; (with E? = 0) and that:

« _ {0 if 7 and ! are both odd;
d(E; x Bi) = B, U B = {Ej_H otherwise;

we deduce

(a+b)(p-1)
A™(((V x V)" % 8") [ Zy) = Z Z Dy(V) x Di(V") x Ej41.
=0

J+l=v
4,0 nat both odd

Therefore if we consider the index v = (a+b—2i{)(p—1), this is even, ensuring that so
are both j and I; thus the only D;(V') and D; (V') not necessarily zero (by Proposition 1)
are of the type

D((L—Za)(p—l)(v), D(},,zg)(p_])(vl), with o + 3 = 1.
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Finally, expanding also A™(((V x V')? x S")/Z,) by the Kiinneth formula, and ob-
serving that (—1)7®7~% = | because now j is even we conclude that

Dy(V x V)= 3" Diacrayip-n(V) x Dip_zgypy (V')
- S3=1

PV xV'y= Y PYV)x PPV).

a+G3=1
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