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Whitney homology, cohomology and Steenrod squares

CLAUDIO MUROLO (*)

Abstract. – In [1] Goresky proved that, for a Whitney object X, there
is a bijection Rk : WHk(X) → Hk(X) where WHk(X) is a set obtained from
stratified cochains in X by passing to the quotient with respect to a cobordism
relation. In this paper ideas and techniques contained in [1] are expanded by
first of all introducing a group operation in WHk(X), geometrically defined via
transerse union of cochains, in such a way that the representation map Rk becomes
a group isomorphism, and secondly, using transverse union, by giving a geometrical
construction of Steenrod squares in the context of Whitney cochains.
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1. Introduction

As is known, a Whitney object X in a smooth manifold M is a set strat-
ified by submanifolds of M , in which every pair of strata verifies Whitney’s
condition B. In [1] Goresky lays foundations for a geometric description
of homology and cohomology in the context of Whitney chains, which he
also calls geometric chains. Let us briefly say that the notion of Whitney
chain is the exact analogue of simplicial chain and is obtained from the
latter by substituting “simplex” by “stratum” and “simplicial complex” by
“Whitney object”. Two Whitney cycles are called cobordant if they are
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L-equivalent in the sense of Thom, i.e. if there exists a Whitney chain in
X × [0, 1] whose boundary is the difference of the two cycles placed one in
X × 0 and the other in X × 1. Goresky thus constructs, for every k ≥ 0
and in the usual way, a quotient set WHk(X) to which we can refer as the
(k-dimensional) Whitney homology of X. Let us note here that Goresky
does not introduce a sum operation in WHk(X). On the other hand, since
each Whitney cycle admits a fundamental class in singular homology, he
deduces the existence of a map between sets RX : WHk(X) → Hk(X),
completely analogous to the representation map of Thom-Steenrod between
the differential bordism and singular homology of a space. One of the main
results of Goresky asserts that if X is a manifold then RX is a bijective
map.

The cohomological case is surprisingly simpler and more fruitful, after
having established the definitions with care. A (k-dimensional) Whitney
cochain in X is essentially a Whitney object embedded in X (with codi-
mension k) in such a way that it “meets transversally” the singularities
of X.

Goresky introduces a coboundary operator and shows that there is a
smooth neighborhood U of X in M such that each Whitney cocycle of X
is obtained by transverse intersection of X itself with a Whitney cocycle
of U modulo ∂U . We recognize in this last construction the germ of the
Alexander Duality for the embedding of X in M , and so it is not surprising
that the bijectivity of RU in homology (U is a manifold!) entails bijectivity
in cohomology for the map RX : WHk(X) → Hk(X) whatever X.

In this paper we want to complete Goresky’s paper, transforming RX

from a simple bijective correspondence of sets to an equivalence of cohomo-
logical theories. This is obtained by introducing in WHk(X) a group opera-
tion geometrically defined through “transverse union of cocycles” and show-
ing that in such a way, R becomes a group isomorphism, or better still a nat-
ural transformation of functors. In fact if f : X1 → X2 is a controlled map
between the Whitney objects X1 and X2, then f∗ : WHk(X2) → WHk(X1)
defined through “transverse preimage” turns out to be a group homomor-
phism. The whole theory is developed also with coefficients in an arbitrary
abelian group G. This is precisely the content of § 3; while in § 2 we treat
the homological case of Whitney homology of a smooth manifold X.

It seems hard, at the moment, to define a “transverse union” of cycles
in an arbitrary Whitney object X, since in contrast to cocycles (which meet
transversally the singularities of X) it is not clear, if and in what way it may
be possible to put two cycles of X in a position of mutual transversality.
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This is the same obstacle that limits to a smooth manifold the representation
theorem of Goresky in the homological case.

In the second part of the paper we apply the operation of transverse
union together with the deformation techniques developed by Goresky in
order to construct Steenrod squares using Whitney cochains instead of sin-
gular cochains. The method is the well-known one of the quadratic con-
struction WHk(X) → WH2k(X2 × Sh/Z2), but it needs particular care to
ensure that the Whitney condition B is preserved during the process.

2. Whitney homology

A Whitney object (or space) X in a manifold M is a pair (X, ζ) where
X is a closed subset of M and ζ := {X i

j|j ∈ Ji and i ≤ n} a stratification
of X, i.e. a locally finite partition of smooth connected manifolds, called
strata (dimXj

i = i) such that
a) the h-skeleton Xh :=

⋃

j∈Ji

⋃

i≤h

Xj
i is closed in X (and in M);

b) each {X i
j}j∈Ji

is the family of all connected components of Xi −
Xi−1;

c) each pair of distinct strata verifies Whitney’s condition B (W.C.B
see [2]).

For every Whitney space X a fixed stratification will be understood.
In such a way for each h ≤ dimX = n the h-skeleton Xh is again a (h-
dimensional) Whitney space with the obvious induced stratification. Mather
proved in [2] that every Whitney space X admits a system of control data
(S.C.D.) and that two strata A, B with A∩B �= ∅ verify both dimA < dimB
and A ⊆ B (we then write A < B). Thus we immediately have B =

⊔

A≤B
A

and B − B =
⊔

A<B
A (

⊔
= disjoint union).

2.1 – Remarks about the Goresky representation

A stratified k-subspace of X is a Whitney object V of dimension k which
has every stratum A contained in some stratum SA of X. A k-orientation
of V is an element z =

∑

j∈Jk

njV
k

j of the free abelian group Ck(V ) on Z

generated by the set of the oriented k-strata V k
j of V in which we identify

the elements with opposite orientations and multiplicity in Z. With such
hypotheses we define the “reduction” of ξ as the new chain ξ/ := (V/z, z)
obtained by restricting the support of V to its essential part: i.e. we consider
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only the strata A adjacent to some Vj with maximal dimension k (hence
A ⊆ Vj) and multiplicity nj �= 0 in Z. Explicitly V/z :=

⋃

nj �=0

Vj =
⋃

nj �=0

Vj

with the obvious induced stratification. A k-cycle ξ = (V, z) is a chain whose
boundary ∂ξ is zero, where ∂ξ is defined by the reduction ∂ξ := (Vk−1, ∂z)/

and ∂z is given by the homological boundary operator through the natural
isomorphisms ψk, ψk−1 as (see 3.2) in the diagram

∂ : Ck(V )
ψk−−−→Hk(Vk, Vk−1)

∂k−−−→Hk−1(Vk−1, Vk−2)
ψ−1

k−1
−−−→Ck−1(Vk−1) .

Fix now a k-cycle ξ = (V, z); we have ∂z = 0 and therefore ∂kψk(z) = 0.
Now by the exactness of the pairs (Vk, Vk−1) and (Vk−1, Vk−2) we have that
the maps i∗ and j∗ induced by the inclusions (below defined) are monomor-
phisms, and then looking at the diagram

∂k 

�

Hk(Vk−1) −→Hk(Vk)
i∗−→Hk(Vk, Vk−1)

∂
−→Hk−1(Vk−1)

j∗
−−−−−−−−−→Hk−1(Vk−1, Vk−2)

I∗



� ψk

�



�

 ψk−1

Hk(X) Ck(Vk) −−−−−−−−−−−−−−−−−−−−−−−−−−→
∂

Ck−1(Vk−1)

we get 0 = ∂kψk(z) = j∗∂ψk(z) and ∂ψk(z) = 0. Hence ψk(z) ∈ Ker ∂ =
Im i∗ so it comes from a unique element i−1

∗ (ψk(z)) whose image in Hk(X),
R(ξ) = I∗i

−1
∗ (ψk(z)) is called the “fundamental class” of ξ in Hk(X).

Denoting by WHk(X) the quotient of the k-cycles modulo the cobor-
dism relation, in [1] Goresky proved the following:

Theorem. – The map Rk : WHk(X) → Hk(X) is well-defined for
every Whitney object X and is a bijection whenever X is a manifold.

2.2 – Transversality

The “nice” morphisms for the Whitney category are the stratified maps
f : X → Y i.e. those which map each stratum R of X smoothly in some
stratum SR of Y . The definitions of transversality are those one could
expect: we require the usual condition on each stratum. With the above
notation, from lemma 5.3. in [1] we have immediately
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Theorem. – If a stratified map f : X → Y between the objects X
and Y in the manifolds M and M ′ (is controlled or) has a smooth extension
f : M → M ′, then every k-cycle ξ = (V, z) of Y equipped with π-fibres(1) is
cobordant to a k-cycle ξ′ = (V ′, z′) with f transversal to V ′.

In particular, if we write f for the inclusion map V ↪→ X, we have that
if ξ1 = (V1, z1) and ξ2 = (V2, z2) are two k-cycles of X there exists a cycle
ξ′
2 = (V ′

2 , z
′
2) which is cobordant to ξ2 and transversal to ξ1.

It is known that the transverse intersection U ∩ V of two arbitrary
subspaces U and V of X is a Whitney subspace of X; we would like to show
that their union U ∪ V is a Whitney subspace too.

First, we remark that for two manifolds M, N ⊆ Rq the following obvi-
ous property holds:

Lemma. – If (M, N) verifies Whitney’s condition B then each pair
(M ′, N ′) of submanifolds N ′ of N and M ′ of M with dimM ′ = dimM
verifies the same condition. In particular this holds when M ′ and N ′ are
connected components of M and N .

Proposition. – The union V ∪W of two stratified subspaces V and
W wich are transversal in X is again a Whitney subspace of X.

Proof. – Since

V ∪W = (V ∩W )
(V −W )
(W −V ) and V =
⊔

A′⊆V

A′, W =
⊔

B′⊆W

B′

(A′,B′ strata) we have that V ∪ W has a natural partition in smooth
connected manifolds. Notice that A − W is a submanifold of A with
dimA − V = dimA, being open in A, and the same holds for B − V .

In order to show that the h-skeleton (V ∪W )h is closed in V ∪W , it is
sufficient to observe that Vh∩W ⊆ (V ∩W )h and similarly Wh∩V ⊆ (V ∩W )h

and then use the identity

(V ∪ W )h = (V ∩ W )h ∪ (Vh − W ) ∪ (Wh − V ) = (W ∩ V )h ∪ Vh ∪ Wh .

Given two strata Z, Z ′ of V ∪ W to prove Whitney’s condition B, by
the above lemma it is not restrictive to assume that they are of the type
A ∩ B, A − W, B − V and to examine the following case:

(1)This mean that V verifies the π-fibre condition (see [1]).
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1) if Z = A∩B and Z ′ = A′ ∩B′ then (Z, Z ′) verifies W.C.B because
V ∩ W is a Whitney object;

2) if Z = A ∩ B and Z ′ = A′ − W then we apply the above lemma to
(A, A′);

3) if Z = A − W , Z ′ = A′ ∩ B′ then Z ∩ Z ′ = (A − W ) ∩ A′ ∩ B′ ⊆
(V − W ) ∩ W = ∅.

All the other cases can be dealt with in a similar way.

2.3 – The transverse sum in WHk(X)

If X is a manifold the bijection R : WHk(X) → Hk(X) induces in an
obvious way a group operation in WHk(X), but we want to give it a precise
geometrical meaning.

First we observe that if V and W are two k-subspaces transverse in
X, then each k-orientation z =

∑
njVj of V can be interpreted as a k-

orientation of the union V ∪ W substituting each stratum Vj with the
connected components of the manifold in which it is subdivided by the
stratification of V ∪ W . In such a way we have a natural group inclusion
β : Ck(V ) → Ck(V ∪ W ) by which the following diagram is commutative

Ck(V )
ψk−−−→ Hk(Vk, Vk−1)

β




�




� i∗

Ck(V ∪ W )
χk−−−→ Hk(V ∪ W, (V ∪ W )k−1) .

Therefore, given two chains ξV = (V, zV ) and ξW = (W, zW ), embedding
their orientations in the same group Ck(V ∪W ), we can sum them obtaining
the chain

ξV + ξW :=
(
V ∪ W, βV (zV ) + βW (zW )

)

(of X) which is called the “transversal sum” of ξV and ξW .

Proposition. – ∂(ξV +ξW ) = ∂ξV +∂ξW . In particular the transverse
sum of two k-cycles is again a k-cycle.

Proof. – Considering the k-subspace V = Vk and the (k − 1)-skeleton
Vk−1, we find the commutative diagrams (1) and (2).

On the other hand the (k−1)-strata of Vk−1∪Wk−1 are also (k−1)-strata
in (V ∪ W )k−1, producing the inclusion homomorphism J which corresponds
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in singular homology to the homomorphism γ∗ induced by the inclusion of
pairs γ.

Therefore, we have the commutative diagram

∂V 

�

Ck(V )
ψk−→ Hk(Vk, Vk−1)

∂k−→ Hk−1(Vk−1, Vk−2)
ψ−1

k−1
−−→ Ck−1(Vk−1)

α/∗


� (2)



� βVk−1

βVk











�

(1) α∗











�

Hk−1(Vk−1∪ Wk−1), (Vk−1∪ Wk−1)k−2)
φ−1

k−1
−−→ Ck−1(Vk−1∪Wk−1)

γ∗


�



� J

Ck(V ∪W )
χk−→Hk(V∪W,(V∪W )k−1)

∂k−→Hk−1((V∪W )k−1,(V∪W )k−2)
χ−1

k−1
−−→Ck−1((V∪W )k−1)

�



∂V ∪W

and so the relation

∂V ∪W βVk
(zV ) = JβVk−1

∂V (zV ) .

Likewise we find for W

∂V ∪W βWk
(zW ) = JβWk−1

∂W (zW )

and summing in Ck−1

(
(V ∪ W )k−1

)
we have the equality

∂V ∪W

(

βVk
(zV ) + βWk

(zW )
)

= J

(

βVk−1
∂V (zV ) + βWk−1

∂W (zW )
)

.

Now, it is easy to get, by the definition of reduction of a geometric
chain, the following relations:

a) (Vk−1

⋃
Wk−1)/βVk−1

(z1)+βWk−1
(z2) = Vk−1/z1

⋃
Wk−1/z2

b) (V
⋃

W )k−1/J(z)
= (Vk−1

⋃
Wk−1)/z

So we are able to conclude that

∂(ξV + ξW ) =
(
V ∪ W, βV (zV ) + βW (zW )

)
/

=
(
(V ∪ W )k−1/J(...), J(...)

)
=

=
(
Vk−1 ∪ Wk−1/.., ..

)
=

(
Vk−1/∂zV

∪ Wk−1/∂zW
, βVk−1

∂(zV )+βWk−1
∂(zW )

)
=

=
(
Vk−1/∂zV

, ∂zV

)
+

(
Wk−1/∂zW

, ∂zW

)
= ∂ξV + ∂ξW .
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Theorem. – Let Xn be a smooth manifold without boundary. For
each pair ξV1

, ξV2
of k-cycles of X define

[ξV1
] + [ξV2

] := [ξV1
+ ξV ′

2
]

where ξV ′
2

is a k-cycle of X cobordant to ξV2
and transverse to ξV1

. Then we
have a well defined group operation in WHk(X) with respect to which the
Goresky representation Rk : WHk(X) → Hk(X) becomes an isomorphism
of abelian groups.

Proof. – Let ξV1
≡ ξW1

, ξV2
≡ ξW2

be k-cycles of X which we can
suppose to be reduced, and let furthermore ξV ′

2
, ξW ′

2
be two cycles of X

such that:
ξV ′

2
is cobordant to ξV2

and transversal to ξV1

ξW ′
2

is cobordant to ξW2
and transversal to ξW1

.
We remark that all subspaces of a manifold X are obviously equipped

with π-fibres and so such cycles ξV ′
2

and ξW ′
2

exist by the transversality
lemma.

If we assume again these to be both reduced we have to show that:

ξV1
+ ξV ′

2
≡ ξW1

+ ξW ′
2

i.e. they are cobordant.
First we observe that the space X2 = X × [0, 1] is an (n + 1)-Whitney

object (dimX = n) with n-skeleton (X2)n = X × 0 ∪ X × 1 in which

ξW ′
2
× 1 − ξV ′

2
× 0 is transverse to ξW1

× 1 − ξV1
× 0 .

Since ξV1
≡ ξW2

, there is a (k + 1)-chain θU1
in X × [0, 1] and any ε > 0

such that:
a1) U1 ∩ (X × [0, ε[) = V1 × [0, ε[; U1 ∩ (X × ]1 − ε, 1]) = W1 × ]1 − ε, 1]
b1) ∂θU1

= ξW1
× 1 − ξV1

× 0
and similary for ξV ′

2
≡ ξW ′

2
we can find a (k + 1)-chain θU ′

2
such that:

a′
2) U ′

2∩ (X × [0, ε[) = V ′
2 × [0, ε[ ; U ′

2∩ (X×]1−ε, 1] = W ′
2×]1−ε, 1]

b′2) ∂θU ′
2

= ξW ′
2
× 1 − ξV ′

2
× 0.

Thus by b1) and b′2) we have that the part ∂θU ′
2

of θU ′
2

contained in
(X2)n is transverse to ∂θU1

(of θU1
) which is also in (X2)n.

By a1) and a′
2) such transversality holds in the open neighbourhood

U = X × ([0, ε[ ∪ ]1 − ε, 1]) of (X2)n. Now, since θU ′
2

is equipped with π-
fibres in X2, in the same way as in the inductive passage of the proof of
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the transversality lemma (see [1] 5.3.), we can find a (k + 1)-chain ζ in X2

coinciding with θU ′
2

in U and transverse to θU1
in all of X2.

So the transverse sum chain θU1
+ζ exists and (since |ζ|∩U = |θU ′

2
|∩U)

by a1) and a′
2) its support satisfies

a) |θU1
+ ζ| ∩ (X × [0, ε[) = (|θU1

| ∪ |ζ|) ∩ (X × [0, ε[) = (V1 ∪ V ′
2) ∩

(X × [0, ε[) = (V1 ∪ V ′
2) × [0, ε[ ;

|θU1
+ ζ|∩ (X×]1 − ε, 1])= . . . similarly . . .=(W1 ∪ W ′

2)× ]1 − ε, 1])

and by the previous proposition

b) ∂(θU1
+ ζ) = ∂θU1

+∂ζ = ∂θU1
+∂θU ′

2
= (ξW1

×1− ξV1
×0)+(ξW ′

2
×

1 − ξV ′
2
× 0) = (ξW1

+ ξW ′
2
) × 1 − (ξV1

+ ξV ′
2
) × 0.

Thus θU1
+ ζ is the required cobordism, and ξV1

+ ξV ′
2

is a cycle, again
by the previous proposition.

About the second statement, it is sufficient to prove that

R([ξ1 + ξ2]) = R([ξ1]) + R([ξ2]).

Fix two cycles ξ1 = (V1, z1), ξ2 = (V2, z2) transverse in X, and denote
by i1, i2, i, I1, I2, I, α1, α2 the inclusions which induce (in homology) the
homomorphisms appearing in the following diagrams

Ck(V1)
ψk→ Hk(V1, |V1|k−1) Ck(V2)

φk→ Hk(V2, |V2|k−1)

βV1 ↓ ↓ α1∗ βV2 ↓ ↓ α2∗

Ck(V1 ∪ V2)
χk→ Hk(V1 ∪ V2, |V1 ∪ V2|k−1) Ck(V1 ∪ V2)

χk→ Hk(V1 ∪ V2, |V1 ∪ V2|k−1)

and in the diagrams

Hk(V1, |V1|k−1)
i1∗← Hk(V1) Hk(V2, |V2|k−1)

i2∗← Hk(V2)
ψk ↑ ↗ ↓ I1∗ φk ↑ ↗ ↓ I2∗

Ck(V1) Hk(X) Ck(V2) Hk(X)

Hk(V1 ∪ V2, |V1 ∪ V2|k−1)
i∗← Hk(V1 ∪ V2)

χk ↑ ↗ ↓ I∗
Ck(V1 ∪ V2) Hk(X)

We then get the following equalities

a) R(ξ1) = I1∗i
−1
1∗ ψk(z1) ; R(ξ2) = I2∗i

−1
2∗ φk(z2)
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b) R(ξ1 + ξ2) = I∗i
−1
∗ χk(βV1

(z1) + βV2
(z2)).

Now the inclusions of pairs

I12 : (V1, ∅) → (V1 ∪ V2, ∅) , I21 : (V2, ∅) → (V1 ∪ V2, ∅)

evidently verify the relations:
a′) α1 ◦ i1 = i ◦ I12 , α2 ◦ i2 = i ◦ I21 ;
b′) I1 = I ◦ I12 , I2 = I ◦ I21

so we find that

χk

(
βV1

(z1)+βV2
(z2)

)
= χkβV1

(z1) +χkβV2
(z2) = α1∗ψk(z1)+α2∗φk(z2) =

= i∗I12∗i
−1
1∗ ψk(z1) + i∗I21∗i

−1
2∗ φk(z2) = i∗

(
I12∗i

−1
1∗ ψk(z1) + I21∗i

−1
2∗ φk(z2)

)
.

Hence

i−1
∗ χk

(
βV1

(z1) + βV2
(z2)

)
= I12∗i

−1
1∗ ψk(z1) + I21∗i

−1
2∗ φk(z2)

and finally we conclude that

R
(
ξ1 + ξ2

)
= I∗i

−1
∗

(
χk(βV1

(z1) + βV2
(z2))

)
=

= I∗
(
I12∗(i−1

1∗ ψk(z1)) + I21∗(i−1
2∗ φk(z2))

)
=

= I1∗i
−1
1∗ ψk(z1) + I2∗i

−1
2∗ φk(z2) = R(ξ1) + R(ξ2).

Corollary. – The sum of two cycles ξ1 = (V, z1) and ξ2 = (V, z2)
having the same support V is given by the sum of their orientations: i.e.
[ξ1 + ξ2] = [(V, z1 + z2)]. The zero element of WHk(X) is the null cycle
0 = (∅, 0). The opposite class of each ξ = (V, z) is given by inverting the
orientation in Ck(V ): i.e. −[ξ] = [(V,−z)].

Proof. – Considering the cycle ξ = (V, z1 + z2) we find

R([ξ1] + [ξ2]) = R([ξ1]) + R([ξ2]) = I∗i
−1
∗ ψk(z1) + I∗i

−1
∗ ψk(z2) =

= I∗i
−1
∗ ψk(z1 + z2) = R([ξ])

and we use the bijectivity of R.
The others assertions follow similarly.
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2.4 – Homology with coefficients in an abelian group

Fix a Whitney object X and an abelian group G.
For every k-subspace V of X we can define a k-orientation of V with

coefficients in G to be a formal sum of the type z =
∑

j
gjVj where j ∈

Jk, gj ∈ G and gj �= 0 for a finite number of j, for which Vj is G-oriented.
We thus construct (instead of the Ck(V )) the new group

Ck(V ;G) =
{∑

gjVj

∣
∣ . . . and Vj is G-oriented

}
.

In this way Whitney chains with coefficients in G are defined as pairs ξ =
(V, z) where z ∈ Ck(V ;G). It is now important to note that in this theory
we still have the isomorphism ψk : Ck(V ; G) → Hk(V, Vk−1; G) (see 2.3.).

Then it is also clear how we must define the boundary of an orientation
z ∈ Ck(V ;G) of a chain ξ = (V, z), and then, with obvious meaning of the
symbols, the set WHk(X;G).

Rereading the essential steps of the above proof we easly find that all
the results of § 2 extend to WHk(X;G). We then have:

Theorem. – If X is a smooth manifold without boundary, then the
representation map R : WHk(X; G) → Hk(X;G) is a group isomorphism.

3. Whitney cohomology

In the following we show in what way the obtained results can be ex-
tended to the cohomological case for every Whitney space X (not necessar-
ily a manifold). It will be crucial that the cocycles of X are equipped with
π-fibres by definition, and thus the transversality lemma holds for them.

3.1 – Costrata and coorientability

Let V be a π-fibre of X. We call k-costratum of V , every connected
component Ds

k (s ∈ Γk) of the union
⋃

codim(A)=k A (A stratum embedded
in X with codimension k). V is called a k-π-fibre of X if it has only costrata
(and hence strata) with dimension at least k (k fixed). In such a way the
p-coskeleton defined by V p :=

⋃
k′≥p

⋃
s Ds

k′ is the support of a p-π-fibre V p

of X, and we have

∅ = V n+1 ⊆ V n ⊆ . . . ⊆ V k = . . . = V 0 = V .
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A k-costratum D has each of its strata A lying in some stratum SA of
X with codimension k; then the normal bundle EA =⊥ (A, SA) is defined
with vector space fibre Ep =⊥p (A, SA), ∀p ∈ A, having dimension k
independent of the dimension of A; i.e.:

dimEp = dim ⊥p (A, SA) = codimA = k.

These bundles EA fit together by the p-π-fibre condition (see [1]) deter-
mining a global bundle ED =

⋃
A⊆D EA over the costratum D with fibres

isomorphic to Rk.
Writing ĖD = ED − D (D = 0 − section) we have a fibre-bundle pair

(ED, ĖD) over D with fibres (Ep, Ėp) ∼= (Rk, Rk − 0). By homotopy we may
think of this as a sphere-bundle and carry over the definitions and properties
concerning the orientability. Thus D is called G−coorientable if (ED, ĖD) is
a G-orientable sphere bundle pair. Then G-coorientability is characterized
by the cohomology Hk(ED, ĖD;G).

We fix [10] chap.5 sec.7 for reference and various notations.

Proposition 1. – Hk(ED, ĖD; G) ∼=
{

G if D is G-coorientable;
0 otherwise.

Proof. – If D is G-coorientable, then by Thom isomorphism we have

Hk(ED, ĖD;G) ∼= H0(D, G) ∼= G.

If D is not G-coorientable there exists a covering Ω = {V }V of D (see [10]
cor. 17) for which there is a compatible family uΩ = {uV }V ∈Ωwith every
uV ∈ Hk(EV , ĖV ;G). Therefore the module Hk({p−1(V )}, ED;G) formed
by all the compatible collections over Ω must be null. Then by isomorphism
([10] lemma 6) we find

Hk(ED, ĖD;G) ∼= Hk({p−1(V )}, ED;G) ∼= 0.

Considering now the free abelian group over the set of all G-cooriented
k-costrata D of V , i.e.

Ck(V k;G) :=






∑

s∈Γk

gsD
k
s | . . . and Dk

s is G-cooriented






obtained by the usual identification g · D = (−g) · (−D) we have:

Proposition 2. – There is a natural isomorphism

ψk : Ck(V k;G) −→ Hk(X − V k+1, X − V k;G) .
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Proof. – See 3.3.

Every element of Ck(V ;G) will be called a k-coorientation of V with
coefficients in G.

In the next section all coefficients are in a fixed abelian group G.

3.2 – The isomorphism Rk : WHk(X; G) → Hk(X; G)
A k-cochain in X is a pair θ = (V, c) where V is a k-π-fibre of X and

c =
∑

j
gjDj is a k-coorientation of V . The reduction θ/ = (V/c, c) of θ is

obtained by restricting the support of V to costrata Dj with multiplicity
gj �= 0. θ is called a k-cocycle if δθ = 0, where the latter is the reduction
δθ = (V k+1, δc)/ and δc is defined through the cohomological boundary by

δ : Ck(V k)
ψk

→ Hk(X−V k+1, X−V k)
δk→ Hk+1(X−V k+2, X−V k+1)

(ψk+1)
−1

−→ Ck+1(V k+1).

If θ = (V, c) is a cocycle, using the exact sequence of the triads

X − V k ⊆ X − V k+1 ⊆ X , X − V k+1 ⊆ X − V k+2 ⊆ X

in the diagram

Hk(X, X−V k+1)
j∗→ Hk(X, X−V k)

i∗→
I∗ ↓

Hk(X)

Hk+1(X, X−V k+2)

↓ h∗

i∗→ Hk(X−V k+1, X−V k)
δ→ Hk+1(X, X−V k+1)

ψk ↑ δk ↘ ↓ H∗

Ck(V ) Hk+1(X−V k+2, X−V k+1)

we have δc = 0, and hence δkψ
k(c) = ψk+1δ(c) = 0 so ψk(c) ∈ Ker δk =

Ker δ = Im I∗ (see 4.5. [1]). Thus a unique element i∗−1ψk(c) is determined
in Hk(X, X −V k) whose image Rk(θ) = I∗i∗−1ψk(c) in Hk(X) is called the
fundamental class of θ in Hk(X).

Denoting by WHk(X) the quotient of the cocycles modulo the cobor-
dism relation, in [1] Goresky proved the following:

Theorem. – For every Whitney space X the map Rk : WHk(X) →
Hk(X) is well defined and bijective.
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3.3 – (About the) duality between the maps ψk and ψk

The homological ψk. If V is a k-cycle of X ∈ M the isomorphism ψk :
Ck(V )

∼=→ Hk(Vk, Vk−1) is defined as follows. Fix a system of control data
{(TA, πA, ρA)}A of V ; ∀ρ > O we denote by TρA the tubular neighbourhood
of A in V (i.e. TρA = TA(ρ) ∩ V ) and by Tρ(Vk−1) =

⋃
dimA≤k−1TρA. The

latter retracts over Vk−1 and thus we have for some ε > 0 Hk(Vk, Vk−1) ∼=
Hk(Vk, T2ε(Vk−1)). Now by excision of Tε(Vk−1) we get:






Vk − Tε(Vk−1) = (V − Vk−1) − Tε(Vk−1) =
⋃

S=k−stratum

Sε

T2ε(Vk−1) − Tε(Vk−1) =
⋃

S=k−stratum

(Sε − S2ε)

where Sε = {p ∈ S | ρA(p) ≥ ε, ∀A stratum of Vk−1} is a k-manifold
(with corners) and Sε − S2ε retracts over ∂Sε. Thus we have by excision
and homotopy (see [10] cap.6 sec.3)

Hk(Vk, Vk−1;G) ∼= Hk(Vk, T2εVk−1)∼= Hk(
⊔

Sε,
⊔

∂Sε) ∼=
⊕

Sε

Hk(Sε, ∂Sε)∼=

∼=
⊕

S=k−stratum
G−orientable

GS = Ck(Vk).

The cohomological ψk. If V is a k-cocycle of X, the isomorphism ψk is
defined as follows. The tubular neighbourhoods of the costrata D of V are
given by

TD =
⋃

A⊆D

TA , T (V k − V k+1) =
⋃

D=k−costratum

TD.

Therefore excising X −T (V k −V k+1) from the pair (X −V k+1, X −V k) we
get





X − V k+1 −
(
X − T (V k − V k+1)

)
= T (V k − V k+1) =

⋃

D=k−costratum

TD

X − V k −
(
X − T (V k − V k+1)

)
= T (V k − V k+1) − (V k − V k+1) =

⋃

D=k−costratum

TD − D.

Thus

Hk(X−V k+1, X−V k)∼=Hk(
⋃

TD,
⋃

TD−D)∼=
⊕

D=k−costratum

Hk(TD, TD− D)
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but since TD
∼= ED and by proposition 2.1., the latter is also isomorphic to

⊕

D=k−costratum

Hk(ED, ĖD) ∼=
⊕

D=k−costratum
G−coorientable

GD = Ck(V k;G).

It is important to notice that the isomorphisms ψk and ψk are essentially
given by homomorphisms induced by inclusions.

Finally we can now recall simultaneously the definitions of two repre-
sentation maps, the homological and the cohomological

Rk : WHk(X) → Hk(X) ; Rk : WHk(X) → Hk(X)

immediately noticing that if ξ = (V, z) is a k-cycle or if θ = (V, c) is a
k-cocycle, with the homomorphisms in the following diagrams

Hk(Vk, Vk−1)
i∗← Hk(Vk) Hk(X − V k+1, X − V k)

i∗← Hk(X, X − V k)
ψk ↑ ↗ ↓ I∗ ψk ↑ ↗ ↓ I∗

Ck(V ) Hk(X) Ck(V ) Hk(X)

by definition we have

Rk(ξ) = I∗i
−1
∗ ψk(z) ; Rk(θ) = I∗i∗−1ψk(c) .

Then we find a situation of complete parallel between the homological case
and the cohomological case. Therefore we can develop a detailed analysis
of § 2 in a cohomological version carrying out in the propositions and (in
the) proofs the following substitutions:

k − π − fibre , k − cocycle instead of k − subspace , k − cycle

k − costratum , k − coskeleton k − stratum , k − skeleton

k − coorientation , Ck(V k) k − orientation , Ck(Vk)

ψk : Ck(V k) ∼= Hk(X − V k+1, X − V k) ψk : Ck(V ) ∼= Hk(Vk, Vk−1)

δ : Ck(V k) → Ck+1(V k+1) ∂ : Ck(Vk) → Ck−1(Vk−1)

The final result is that the whole section “1.2. The transverse sum in
WHk(X)” may be developed in a formally analogous way considering the
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cohomology WHk(X) of an arbitrary space X rather than the homology of
a manifold X.

Remembering that in the cohomological case, given two cocycles θV1

and θV2
by the transversality lemma there is (always) a cocycle θV ′

2
which

is cobordant to θV2
and transverse to θV1

, we have the following:

Theorem. – For every Whitney object X the representation map
Rk : WHk(X) → Hk(X) is a group isomorphism.

3.4 – Induced homomorphisms

If f : X1 → X2 is a controlled map by the transversality lemma each el-
ement of WHk(X2) can be represented by a k-cocycle θ = (V, c) transversal
to f ; thus we find a partition (in strata) of f−1(V ) = ∪A⊆V f−1(A) in such
a way that this is again a k-π-fibre of X1. Therefore the k-coorientation
c =

∑
gjDj induces a k-coorientation f−1(c) =

∑
gjf

−1(Dj) of f−1(V )
defining a function f∗ which maps every cocycle of X2 onto its transversal
preimage in X1.

Proposition. – The map f∗ : WHk(X2) → WHk(X1) is a group
homomorphism.

Proof. – In [1] it is proved that f∗ is well-defined and that the diagram

WHk(X2)
f∗
→ WHk(X1)

RX2
↓ ↓ RX1

Hk(X2)
f∗
→ Hk(X1)

is commutative.

Thus f∗ = R−1 ◦ f∗ ◦R being a composition of homomorphisms is itself
a homomorphism.

Preliminary remarks: For the following § 4 and § 5 we consider the
coefficients in the field Z2. Then we have a convenient notational simpli-
fication since the coorientation c of each (reduced) k-cocycle θ = (V, c) is
uniquely determined by the support V so we can, and shall, understand c
and denote θ simply by its support V .
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4. The Steenrod squares

We will give the definition of the maps Sqα : WHk(X) → WHk+α(X)
through a geometric construction substantially consisting of two steps:

a) first we introduce a function ϕ : WHk(X) → WH2k(X2 × Sh/Z2)
defined by V �→ V 2 × Sh/Z2 where the space X2 × Sh/Z2 and its cocycle
V 2 × Sh/Z2 are factorized modulo the Z2-action A : X2 × Sh → X2 × Sh,
A(x, y, t) = (y, x,−t).

b) secondly, the diagonal map ∆ : X×P h → X2 × Sh/Z2, ∆(x, [t]) =
[x, x, t] induces the homomorphism ∆∗ :WH2k(X2×Sh/Z2)→WH2k(X×P h),
in such a way that, by the Künneth formula

∆∗(V 2 × Sh/Z2) ∈ WH2k(X × P h) ∼=
∑

i+j=2k

WH i(X)
⊗

WHj(P h)

and its “component” in WHk+α(X) multiplied by the coefficient bk−α of the
Euler class ek−α will define the element Sqα(V ).

In the whole process h ∈ N can be an arbitrary natural number provided
h ≥ k − α; furthermore it will automatically be Sqα = 0 if α > k.

4.1 – The map ϕ : WHk(X) → WH2k(X2 × Sh/Z2)

Given a Whitney space X we can assume that it has only boundaryless
strata (possibly considering the boundaries as lower dimensional strata) and
because it is not restrictive for WHk(X) we consider only such spaces X.
In this way the product X2 ×Sh is again a Whitney space. Similarly if V is
a k-cocycle of X we find a cobordant 2k-cocycle V 2 ×Sh of X2 ×Sh , and
these can be factorized defining the new objects X2×Sh/Z2 ⊇ V 2×Sh/Z2

which are again a Whitney space and one of its 2k-cocycles.

Proposition 1. – The map ϕ is well defined.

We state first two lemmas.

Lemma 1. – If ζ : V ≡ V ′ is a cobordism, then we can find a
cobordism θ : V ≡ V ′ such that θ2 is transverse to the diagonal map β :
X2 × R → (X × R)2, β(x, y, t) = (x, t, y, t) out of an isolated set.
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Proof. – We observe that β is already transversal to ζ2 over the set
(X × ([0, ε[ ∪ ]1 − ε, 1]))2. In fact

β−1(X × [0, ε[×X×]1 − ε, 1]) = ∅ = β−1(X×]1 − ε, 1] × X × [0, ε[)

and moreover the restriction of β to the subset X2 × ([0, ε[∪]1 − ε, 1]) is
clearly transverse to (V × [0, ε[)2 and to (V ′×]1 − ε, 1])2.

Let us write X2 = X × R. Then we can construct θ inductively by
a substantial repetition of the proof of the transversality lemma with the
following tricks:

1) the deformation must be carried out not “moving” ζ in the neigh-
bourhood X × ([0, ε[∪]1 − ε, 1]);

2) the strata A of θ must verify the condition pr2T(x,t)A �= 0 , outside
an isolated subset of A.

Observing that pr2T(x,t)A = 0 if and only if (x, t) is a critical point
for the map pr2 : A → R and that we can obviously choose as an induction
hypothesis θ0 = ζ, we conclude because transversality follows by condition
2) and cobordism by condition 1).

Lemma 2. – If V ≡ V ′ are cobordant in X, then V 2 ≡ V
′2 are

Z2-equivariantly cobordant in X2 with respect to the action A : X2 × R →
X2 × R, A(x, y, t) = (y, x, t).

Proof. – If θ : V ≡ V ′ is (a cobordism) as in the previous lemma,
then taking its “critical points” as the 0-dimensional strata we have that β
is transverse to θ2 and β−1(θ2) : V 2 ≡ V

′2 is the required cobordism.
To check this we only need to observe that Aβ−1(V1×V2) = β−1(V2×V1)

for each V1, V2 strata of θ.

Proof of Prop. 1. – Let V ≡ V ′ in X and θ : V 2 ≡ V
′2 the

cobordism of the previous lemma. Inverting the last two coordinates we get
the isomorphism X2 × R × Sh ∼= X2 × Sh × R.

The cochain θ × Sh ⊆ X2 × R × Sh defines a cobordism P : V 2 × Sh ≡
V ′2 × Sh which is Z2-equivariant with respect to A. Thus P/Z2 : V 2 ×
Sh/Z2 ≡ V

′2 × Sh/Z2.

We introduce now a property whose usefulness will be clear in the fol-
lowing.

Proposition 2. – The cross product of two classes of Whitney
cocycles is represented by the cartesian product of representative cocycles:
i.e. [V ] × [V ′] = [V × V ′].
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Proof. – The projection maps p1 : X × Y → X and p2 : X × Y → Y
verify the hypotheses of the transversality lemma, thus we can suppose p1

transverse to V and p2 transverse to V ′. Then, by proposition 6.2. in [1],
passing through the cup product in singular cohomology we find

R(V ) × R(V ′) = p∗
1R(V ) ∪ p∗

2R(V ′) = Rp∗
1(V ) ∪ Rp∗

2(V
′) =

= R(p−1
1 (V ) ∩ p−1

2 (V ′)) = R(V × V ′).

4.2 – The refinement isomorphism

If X ′ is a Whitney refinement of X, then, by transversality to I = id :
X ′ → X the homomorphism I∗ : WHk(X) → WHk(X ′) is defined and
because of I∗ = R−1 ◦ id∗ ◦ R, it is an isomorphism. Here we prove that its
inverse J re-interprets the cocycles of X ′ as cocycles of X.

Proposition 3. – The isomorphism J inverse of I∗ is defined by

J : [V ]X′ ∈ WHk(X ′) → [V ]X ∈ WHk(X) .

Proof. – If V �= 0 is a k-cocycle in X ′ each of its (strata and hence)
costrata has codimension at least k in X ′ and hence also in X. Moreover
V �= 0 has at least a k-costratum D. The π-fibre condition assures that the
codimension of V does not change passing from the stratum S to any S′ ≥ S
in X. Thus D intersects the strata of highest dimension of X ′ (and of X!)
and has codimension k also in X. Similarly each cobordism in X ′ × R is
again a cobordism in X ×R. Therefore we deduce that J exists and is well
defined.

Finally, for every cocycle V transverse to X ′ we have

J ◦ I∗([V ]X) = J([I−1(V )]X′) = J([V ∩ X ′]X′) = [V ∩ X ′]X = [V ]X

the last identity holding with an obvious cobordism. Thus J ◦ I∗ = id and
the assertion follows by the bijectivity of I∗.

Using the transversality lemma we may also verify directly that
I∗ ◦ J = id.
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4.3 – Definition of Sqα

Through the isomorphism R : WHk ∼= Hk we can suppose that for the
groups WHk(X) the following concepts are known:

a) for every a ∈ WHk(X) the cup product aj = a∪· · ·∪a ∈ WHkj(X);
b) for every h ≥ 1 an Euler class e(P h) ∈ WH1(X) such that e(P h)j

generates WHj(P h);
c) for each [V ] ∈ WHk(X), [V ′] ∈ WHk′

(Y ) the cross product [V ]×[V ′]
which is represented by the cartesian product V × V ′ (see prop.2);

d) the Künneth isomorphism WHn(X×Y )∼=
∑

i+j=n
WH i(X)

⊗
WHj(Y )

which holds because G = Z2 is a field, and furthermore it is defined by the
cross product V × V ′ �→ V

⊗
V ′.

The map ∆h : X × P h → X2 × Sh/Z2 is controlled and hence it induces
the homomorphism ∆∗

h : WH2k(X2 × Sh/Z2) → WH2k(X × P h). Then,
given a k-cocycle V we have

∆∗
h(V 2 × Sh/Z2) ∈ WH2k(X × P h) ∼=

∑

i+j=2k

WH i(X)
⊗

WHj(P h)

and so we can write

∆∗
h(V 2 × Sh/Z2) =

∑

i+j=2k

Ri
h(V ) × bh

j e(P h)j

and define
Sqα

h (V ) = bh
k−αRk+α

h (V ).

Notice that

if h = k − α then ∆∗
h(V 2 × Sh/Z2)=Sqk

h(V ) × e(P h)0 + · · · + Sqα
h (V ) × e(P h)k−α ;

if h = k then ∆∗
h(V 2 × Sh/Z2)=Sqk

h(V ) × e(P h)0 + · · · + Sq0
h(V ) × e(P h)k ;

if h > k then ∆∗
h(V 2 × Sh/Z2)=Sqk

h(V ) × e(P h)0 + · · · + Sq0
h(V ) × e(P h)k+

+bh
k+1R

k−1(V ) × e(P h)k+1 + · · · + bh
2kR0(V ) × e(P h)2k

but we mean to define independently from h ∈ N

Sqα(V ) = Sqα
h (V ).

Proposition. – The definition of Sqα does not depend on h.
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Proof. – Let h′ ≥ h , and i : Sh ↪→ Sh′
, I : P h ↪→ P h′

be the natural
inclusions. Commutativity of diagram (1) implies that of (2)

X × P h ∆h→ X2 × Sh/Z2 WH2k(X2 × Sh/Z2)
∆∗

h→ WH2k(X × P h)
(1 × I) ↓ (1) ↓ 1 × i/Z2 (1 × i/Z2)

∗ ↑ (2) ↑ (1 × I)∗

X × P h′ ∆h′→ X2 × Sh′
/Z2 WH2k(X2 × Sh′

/Z2)
∆∗

h′→ WH2k(X × P h′
)

Moreover if V ∈ WHk(X) by transversality we find

V 2 × Sh/Z2 = (1 × i/Z2)−1(V 2 × Sh′
/Z2) = (1 × i/Z2)∗(V 2 × Sh′

/Z2)

and thus

∆∗
h(V 2 × Sh/Z2)=∆∗

h(1×i/Z2)∗(V 2×Sh′
/Z2)=(1×I)∗∆∗

h′(V 2×Sh′
/Z2)=

=(1 × I)∗(
∑

i+j=2k

Ri
h′(V )×bh′

j e(P h′
)j)=

∑

i+j=2k

bh′
j Ri

h′(V )×I∗e(P h′
)j.

Now recalling that I∗(e(P h′
)j) = e(P h)j we can reach the conclusion by

the uniqueness of decomposition in

WH2k(X × P h) ∼=
∑

i+j=2k

WH i(X)
⊗

WHj(P h) .

The next proposition is fundamental for showing the Cartan formula
but it is convenient to postpone its proof to § 5.

Proposition. – For every h > k Rk−1
h (V ) = · · · = R0

h(V ) = 0 and
thus independently from h ≥ k we have

∆∗
h(V 2 × Sh/Z2) =

∑

0≤α≤k

Sqα
h (V ) × e(P h)k−α .
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5. The axioms

5.1 – Functoriality

If f : X → Y is a controlled map between the Whitney spaces X and
Y , then Sqα ◦ f∗ = f∗ ◦ Sqα.

Proof. – By hypothesis the map

g : X2 × Sh/Z2 → Y 2 × Sh/Z2, g[x, x, t] = [f(x), f(x), t]

is controlled as well. Now, if V ∈ WHk(Y ) by the transversality lemma we
can suppose f transverse to V, and so we find that also g is transverse to
V 2 × Sh/Z2. Therefore we have

g∗(V 2 × Sh/Z2) = [g−1(V 2 × Sh/Z2)] = [f−1(V )2 × Sh/Z2] =
= ϕX [f−1(V )] = ϕXf∗(V )

i.e. the commutativity of diagram (1) below.
On the other hand, by the relation of controlled maps g◦∆X = ∆Y ◦(f×

1) we have the commutativity of diagram (2), and so we conclude putting
together diagrams (1), (2), (3) since by definition Sqα = pr ∆∗ϕ.

WHk(Y )
ϕY→ WH2k(Y 2 × Sh/Z2)

∆∗
Y→ WH2k(Y × P h)

prY→ WHk+α(Y )
f∗ ↓ (1) g∗ ↓ (2) (f × 1)∗ ↓ (3) ↓ f∗

WHk(X)
ϕX→ WH2k(X2 × Sh/Z2)

∆∗
X→ WH2k(X × P h)

prX→ WHk+α(X) .

5.2 – Homomorphism

Each map Sqα is defined by the composition Sqα = pr∆∗ϕ where pr is
the Gysin homomorphism

prk+α : WH2k(X × P h) ∼=
∑

i+j=2k

WH i(X)
⊗

WHj(P h) → WHk+α(X).

Therefore in order to prove that Sqα is a homomorphism it is sufficient
to show that:

Proposition. – The map ∆∗ϕ : WHk(X) → WH2k(X2 ×Sh/Z2) →
WH2k(X × P h) is a group homomorphism.
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Proof. – Let V , V ′ two k-cocycles of X, which we can suppose trans-
verse in X, and observe that with the operation of transverse union in
WHk(X), ∆∗ϕ is a homomorphism if and only if

∆∗
((

V ∪t V ′
)2

× Sh/Z2

)
= ∆∗(V 2 × Sh/Z2) + ∆∗(V ′2 × Sh/Z2) .

Since V and V ′ are transverse in X, then such are V 2 and V ′2 in X2

and consequently V 2 × Sh/Z2, and V ′2 × Sh/Z2 in X2 × Sh/Z2, thus the
previous relation becomes

∆∗((V ∪t V ′)2 × Sh/Z2) = ∆∗(V 2 × Sh/Z2 ∪t V ′2 × Sh/Z2) .

Now we want to subdivide the stratification of (V ∪t V ′)2 × Sh/Z2.
Recalling that the strata (and so also the costrata) of V ∪t V ′ are of the
kind A′ − V , A − V ′, with A ⊆ V and A′ ⊆ B′, we obtain the relation

(V ∪t V ′)2 = (V 2 ∪t V ′2) ∪ (U × U ′ ∪ U ′ × U)

where U := V − V ′ and U ′ := V ′ − V .
Considering the two terms to be the coorientations of (not reduced) cocycles
supported in the space (V ∪ V ′)2, (see 2.cor.) we find

(V ∪ V ′)2 = V 2 ∪ V ′2 + (U × U ′ + U ′ × U)

These considerations still hold after multiplication by Sh and factorization
modulo Z2-action; therefore

(V ∪ V ′)2 × Sh/Z2 = (V 2 ∪t V ′2) × Sh/Z2 + (U × U ′ ∪ U ′ × U) × Sh/Z2.

Finally using the homomorphism ∆∗ and since ∆∗((U ×U ′ ∪U ′ ×U)×
Sh/Z2) = 0 (see the following lemma) we conclude that

∆∗((V ∪t V ′)2 × Sh/Z2) = ∆∗((V 2 ∪ V ′2) × Sh/Z2) =
= ∆∗(V 2 × Sh/Z2 ∪t V ′2 × Sh/Z2) =
= ∆∗(V 2 × Sh/Z2) + ∆∗(V ′2 × Sh/Z2).

Lemma. – ∆∗((U × U ′ ∪ U ′ × U) × Sh/Z2) = 0.
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Proof. – The map ∆ : X × P h → X2 × Sh/Z2 is not transverse to
(U × U ′ ∪ U ′ × U) × Sh/Z2 . Thus we decompose it into the maps in the
following diagram

X × P h ∆′
→ [X2 × Sh/Z2]′

∆ ↘ ↓ I = id
X2 × Sh/Z2

where we have denoted by [X2 × Sh/Z2]′ the subdivision of X2 × Sh/Z2 in-
duced by the subdivision [X2]′={S × T, S2 − d(S), d(S)/S, T strata ofX }.
Then we find ∆∗ = ∆′∗ ◦ I∗. Here I∗ is a subdivision isomorphism (see
4.2.) whose inverse J acts interpreting the 2k-cocycles of [X2 × Sh/Z2]′ as
2k-cocycles of X2 × Sh/Z2 , therefore

I∗((U×U ′∪U ′×U)×Sh/Z2) = (U×U ′∪U ′×U)×Sh/Z2 in X2×Sh/Z2.

Finally since all the restrictions of the map ∆′ are diffeomorphisms, and
hence they verify all transversality conditions, and this is also true for the
diagonal map d : X → [X2]′ , we conclude that

∆′∗I∗((U × U ′ ∪ U ′ × U) × Sh/Z2) = ∆′∗((U × U ′ ∪ U ′ × U) × Sh/Z2) =
=[∆′−1((U × U ′ ∪ U ′ × U) × Sh/Z2)]= [d−1(U × U ′ ∪ U ′ × U) × P h] = 0.

5.3 – Cup product

If V is a k-cocycle of X , Sqk(V ) is the cup product [V ] ∪ [V ].
Proof. – In this case with α = k we can choose h = k − α = 0, so that

S0 ∼= P 0 = P is a one-point space. Therefore

∆∗
0(V

2 × Sh/Z2) = ∆∗
0(V

2 × S0) = ∆∗
0(V × V × P ) = d∗(V × V ) × id∗[P ]

and so
Sqk([V ]) = d∗([V ] × [V ]) = [V ] ∪ [V ]

where the last equality holds through singular cohomology.

5.4 – Sq0 = identity

Proposition 1. – If X is a Whitney space, then the homomorphism
Sq0 is the identity map of WHk(X).
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Proof. – step 1 . Goresky proved in [1] (app.3) that every Whitney
space X is deformable into another space having only conical singularities.
In particular the deformation provides a Whitney space Y which has a
strong deformation retraction onto its subspaces X and X ′. The inclusion
maps iX and iX′ then induce the isomorphisms i∗X and i∗X′ in singular co-
homology and then also in Whitney cohomology. Moreover by functoriality
we have the commutative diagram

WHk(X)
i∗X← WHk(Y )

i∗
X′→ WHk(X ′)

Sq0
X ↓ Sq0

Y ↓ ↓ Sq0
X′

WHk(X)
i∗X← WHk(Y )

i∗
X′→ WHk(X ′)

and thus it will be sufficient to show that Sq0
X′ = id.

step 2 . Now if X is a Whitney space having only conical singularities,
Goresky proved, again in [1], that X has a subdivision in cells X ′ which
is a Whitney object too. Since the inclusion (identity) map I : X ′ → X
induces the isomorphism I∗ by functoriality Sq0

X′I∗ = I∗Sq0
X and then it

is sufficient to show that Sq0
X′ = id.

step 3 . Let then X be a Whitney space in which the strata are cells
and proceed by induction over n = dimX.

If dimX = 0, then the components of X are points and so we can
suppose X = P is a singleton, and Sq0 : WH0(P ) → WH0(P ). Here
the only non-zero cocycle is the point V = P which obviously verifies the
equality

∆∗((P, P ) × Sh/Z2) = [∆−1(P, P ) × P h] = [P × P h].

If dimX = n, then the inclusion of the (n− 1)-skeleton i : Xn−1 → Xn = X
induces the homomorphism i∗ which is a monomorphism for each k ≤
n: this follows by the exactness of the sequence of the pair (X, Xn−1)
in singular theory, and because X being cellular verifies Hk(X, Xn−1) ∼=
Hk(X/Xn−1) ∼= 0.

We then have the commutative diagram

WHk(X) i∗→ WHk(Xn−1)
Sq0

X ↓ ↓ Sq0
Xn−1

WHk(X) i∗→ WHk(Xn−1)

with i∗ monomorphism and Sq0
Xn−1

= id by the inductive hypothesis, Sq0
X =

1WHk(X) then follows whenever k ≤ n − 1. It remains to be shown that
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Sq0
X = 1 also when k = n = dimX . In such a case every n-cocycle of X is

a finite set of points each one of which lies in some stratum of the highest
dimension n of X. Writing V = {P1, P2, . . . Pr} by [V ] =

∑

i≤r
[Pi] and so

Sq0(V ) =
∑

i≤r
Sq0(Pi) we see that it is sufficient to prove that Sq0(P ) = P ,

as we find by the following proposition.

Proposition 2. – If P is a point in any n-cell Cn of X then

∀h ≥ n ∆∗((P, P )× Sh/Z2)={P} × e(P h)n and in particular Sq0(P )=P.

Proof. – It will be a posteriori clear that it is not a restriction to identify
Cn with Rn.

Let ∆− = {(x,−x) | x ∈ Rn} ⊆ Rn × Rn be the antidiagonal space of
Rn and let us consider the natural isomorphisms

Rn × Rn × Sh/Z2
∼= (∆+ × ∆−) × Sh/Z2

∼= ∆+×(∆− × Sh/Z2)
(P, P )×Sh/Z2

∼= (P, P )×(0, 0)×Sh/Z2
∼= (P, P )×((0, 0)×Sh/Z2)

which define a diffeomorphism G : R2n × Sh/Z2 → ∆+ × (∆− × Sh/Z2).

Obviously we have 0 × Sh/Z2
∼= 0 × P h in ∆− × Sh/Z2 .

Since ∆− × Sh/Z2
∼=⊥ (P h, P h+n)

where the latter is the normal bundle of P h in P h+n, we can fix a copy P h
1

of 0 × P h which is transverse to it. Thus

(P, P ) × P h
1 is transverse to ∆+ × (0 × P h) in ∆− × Sh/Z2

i.e.
(P, P ) × P h

1 is transverse to G ◦ ∆

and by the commutativity of the diagram

Rn × P h
∆

−−−−−−−→ Rn × Rn × Sh/Z2

d × I
�

�
�

�↘







�

G

∆+ × (∆− × Sh/Z2)
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we conclude that

∆∗((P, P ) × Sh/Z2) = ∆∗G∗((P, P ) × (0, 0) × Sh/Z2) =
= (G ◦ ∆)∗((P, P ) × P h

1 ) =
= (G ◦ ∆)−1((P, P ) × P h

1 ) = d−1((P, P )) × I−1(P h
1 ) =

= {P} × e(P h)n.

N.B. We can construct directly a cocycle U = (P, P )×Sh/Z2 transverse
to ∆ and verifyng ∆−1(V ) = P × en in the following way. If Sn

1 is the unit
n-sphere in the space ∆−⊕

[e1, e1] and F± : Sn
1 → Sn are the isometries

which identify the unit vectors [ei,−ei] ∈ Sn
1 with Ei ∈ Sn ∀i = 1, . . . , n

and ±[e1, e1] with E0, writing Sn
+ = {t|t0 ≥ 0}, Sn

− = {t|t0 ≤ 0} then the
space V = graph(F+/Sn

+
) ∪ graph(F−/Sn

−
) is Z2-equivariant and V/Z2 is the

required cocycle.

Proposition 3. – For each h > k Rk−1
h (V ) = · · · = R0

h(V ) = 0.
Thus independently from h

∆∗
h(V 2 × Sh/Z2) =

k∑

α=0

Sqα(V ) × ek−α

Proof. – As in steps 1 and 2 of prop.1 we can examine only the case
in which X is a cellular Whitney space. But with hypotheses as in step 3
we find that the inclusion of the k-skeleton i : Xk → X induces ∀r ≤ k a
monomorphism which makes the following diagram commutative

WHk(X) i∗→ WHk(Xk)
Rr

X ↓ ↓ Rr
Xk

WHr(X) i∗→ WHr(Xk) .

Thus we only have to show that the map Rr
Xk

: WHk(Xk) → WHr(Xk)
is the zero homomorphism ∀r < k.

Now, a k-cocycle V of X is a finite set of points which lie in the cells
of the highest dimension n of X, and so we can suppose V = {P} to be a
singleton. Then, since by the previous proposition, ∆∗

h((P, P ) × Sh/Z2) =
{P} × ek we can conclude that the only non-zero Rr

Xk
is for r = k.
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5.5 – The Cartan formula

Let f, g,∆, d the following diagonal maps:






f : X2 × P h → X × P h × X × P h, f(x, x′, [t]) = (x, [t], x′, [t]);

g : X2×X2 × Sh/Z2→X2 × Sh/Z2×X2 × Sh/Z2, g([x, x′, y, y′, t])=([x, y, t], [x′, y′, t]);

∆ = ∆X2 : X2 × P h → X2 × X2 × Sh/Z2, ∆(x, x′, [t]) = [(x, x′), (x, x′), t];

d : P h → P h × P h, d([t]) = ([t], [t]).

They are clearly all controlled and verify (∆h ×∆h)f = g∆ ; thus also
f∗(∆h × ∆h)∗ = ∆∗g∗.

Lemma 1. – If V and V ′ are two cocycles of X then,

g∗(V 2 × Sh/Z2 × V ′2 × Sh/Z2) = (V × V ′)2 × Sh/Z2.

Proof. – This follows directly by preimage once we prove that g is
transverse to the given cocycle. But this is true if and only if the map

g : X2 ×X2 ×Sh → X2 ×Sh ×X2 ×Sh is transverse to V 2 ×Sh ×V ′2 ×Sh

which is easily verified.

Lemma 2. – For the Euler class e = e(γh+1
1 ), d∗(er × es) = er+s

holds.

Proof. – In singular cohomology by known properties of the vector
bundles we have

er × es = e(
⊕

r γ1) × e(
⊕

s γ1) = e ((
⊕

r γ1) × (
⊕

s γ1))
So we conclude applying to both members the map d∗ which commutes

with e.

Proposition. – For each V ∈ WHn(X), V ′ ∈ WHm(X) we have
∀i = 0, . . . , n + m

Sqi(V × V ′) =
∑

α+β=i

Sqα(V ) × Sqβ(V ′).
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Proof. – Fix an h ≥ n + m; we have simultaneously

∆∗
h((V × V ′)2 × Sh/Z2) =

∑

0≤i≤n+m

Sqi(V × V ′) × e(P h)n+m−i

∆∗
h(V 2 × Sh/Z2) =

∑

0≤α≤n

Sqα(V ) × e(P h)n−α

∆∗
h(V ′2 × Sh/Z2) =

∑

0≤β≤m

Sqβ(V ′) × e(P h)m−β.

Now by f = Inv ◦ (1X2 × d) through lemma 2 we find

f∗(∆h × ∆h)∗(V 2 × Sh/Z2 × V ′2 × Sh/Z2) =

=
∑

0≤α≤n
0≤β≤m

Sqα(V ) × Sqβ(V ′) × e(P h)n+m−α−β

where the first term coincides by lemma 1 with

∆∗g∗(V 2 × Sh/Z2 × V ′2 × Sh/Z2) = ∆∗((V × V ′)2 × Sh/Z2).

Therefore

∆∗((V ×V ′)2×Sh/Z2) =
∑

0≤i≤n+m




∑

α+β=i

Sqα(V ) × Sqβ(V ′) × e(P h)n+m−i





and by the uniqueness of decomposition we find

Sqi(V × V ′) =
∑

α+β=i

Sqα(V ) × Sqβ(V ′).
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