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1. Introduction

We recall that a stratification of a topological space A is a locally finite par-
tition Σ of A into C1 connected manifolds (called the strata of Σ) satisfying
the frontier condition : if X and Y are disjoint strata such that X intersects
the closure of Y , then X is contained in the closure of Y . We write then
X < Y and ∂Y = Y − Y so that Y = Y " ("X<Y X

)
and ∂Y = "X<Y X

(" = disjoint union).
The pair X = (A,Σ) is called a stratified space (or stratified object)

with support A and stratification Σ. The union of the strata of dimension
≤ k is called the k-skeleton, denoted by Ak, inducing a stratified space
Xk = (Ak,Σ|Ak

). A substratified space (or substratified object also denoted
S.S.O.) of X is a stratified space W = (W,ΣW), where W is a subset of A,
such that each stratum in ΣW is contained in a single stratum of X .

A stratified map f : X → X ′ between stratified spaces X = (A,Σ) and
X ′ = (B,Σ′) is a continuous map f : A → B which sends each stratum X
of X into a unique stratum X ′ of X ′, such that the restriction fX : X → X ′

is smooth. We call such a map f a stratified homeomorphism if f is a global
homeomorphism and each fX is a diffeomorphism.

∗A Zia Carmela
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A stratified vector field on X is a family ζ = {ζX}X∈Σ of vector fields,
such that ζX is a smooth vector field on the stratum X.

Extra conditions may be imposed on the stratification Σ, such as to be
an abstract stratified set in the sense of Thom–Mather [12, 21, 22] or, when
A is a subset of a C1 manifold, to satisfy conditions (a) or (b) of Whitney
[21, 22, 42], or (c) of K. Bekka [3] or, when A is a subset of a C2 manifold,
to satisfy conditions (w) of Kuo–Verdier [41], or (L) of Mostowski [38].

We send the reader to the original papers and to the above references
for their definitions and main properties.

Let X = (A,Σ) be a stratified space. For stratified transversality we
mean the problem of deforming a substratified object W of X via a stratified
isotopy Φ : X × I → X to a substratified object W ′ = Φ1(W) of X which
is transverse to V in X , or more generally with respect to a fixed stratified
map g : Y → X , for some stratified space Y.

This problem was solved by Clint McCrory for stratified polyhedra [23,
24] ; his result is essential to the foundations of intersection homology [16].

For Whitney (b)-regular stratifications Mark Goresky gave a transver-
sality theorem ([15], 5.3) valid only for π-fibre substratified objects W, and
controlled maps g : Y → X [21, 22]. These two properties mean respectively
that the support W of W is locally, near each point x of A, a union of fibres
of a projection πS : TS → S where S is the stratum of X containing x and
a similar property at the level of the fibre of g. This result is essential in
proving the main theorems of Goresky about representing the cohomology
by stratified objects ([15] 4.7 and 6.2).

More recently in [31] and [32], A. du Plessis, D. Trotman and myself
gave two different proofs that “after stratified isotopy of X, a stratified sub-
space W of X , or a stratified map h : Z → X , can be made transverse
to a fixed stratified map g : Y → X” : the second (historically the first,
[29] 1997) using time-dependent vector field techniques and the family of
geodesics introduced by Mather [20] and the first (historically the second)
by adapting some ideas indicated at the end of Goresky’s thesis ([14], 1976)
and in the 1987 book [17]. The authors of [31, 32] obtained a generalisation
of Goresky’s theorem, with less restrictive hypotheses and which applies to
all abstract stratified sets and (w)-regular nice stratifications, hence for any
(b)-, (c)- or (L)-regular nice stratification, and which allows one to develop
further Goresky’s geometric homology theory [29]. This stratified transver-
sality theorem holds for the most important types of regular stratifications,
and for every stratified map without assuming control conditions.

In particular, we obtain an analogue of Goresky’s theorem for stratified
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maps g : Y →X which are not necessarily controlled and for substratified
objects W which are not necessarily π-fibre.

The analogous theorem for two stratified maps was also obtained.
We present moreover various applications of Goresky’s transversality

theorem and of its generalisations in [31, 32], pointing out some related
problems which are still open.

I thank David Trotman who suggested I write this survey.

2. The PL-Transversality Theorem

In the context of PL-stratified spaces, the problem of putting in transverse
position two substratified polyedra of a stratified polyedron X was solved
in 1977 by Clint McCrory [24]. This theorem states :

Theorem 2.1. Let X be a stratified polyedron and A,B,C closed subpolye-
dra with B ⊇ C. There exists a PL isotopy H : X × I → I such that :

i) |Ht(x)− x| < ε for all x and t ∈ I;
ii) Ht(x) = x for all x ∈ C and all t ∈ I;
iii) A and H1(B − C) are in general position in X .

Such a theorem, which uses a simplicial technique of Zeeman, was first
proved without the property ii) by McCrory in his Ph.D. thesis ([23] p. 98,
1972) and previously again without the property i) in Akin’s Ph.D. thesis
([2] p. 471, 1969).

Recall historically that in 1895 and 1899, in his famous papers Analysis
Situs and Complément à l’Analysis Situs which founded modern algebraic
topology, H. Poincaré studied the intersection of an i-cycle and a j-cycle in a
compact oriented n-manifold X in the case of complementary dimension (i+
j = n) then, in 1926, the theory was extended by S. Lefschetz to arbitray i
and j. Fifty years later in 1980, in their celebrated paper [16] Mark Goresky
and Robert MacPherson introduced Intersection Homology Theory in which
they generalize to a class of singular spaces, the PL-pseudomanifolds, the
Poincaré–Lefschetz cup product pairing ∩ : Hi(X)×Hj(X) → Hi+j−n(X).

In this context, McCrory’s PL-transversality theorem (in a relative ver-
sion), played a fundamental role in defining the Goresky–MacPherson inter-
section pairing which extends the Poincaré–Leschetz map and was in this
way essential to the foundation of intersection homology theory.

3. Transversality for Whitney stratifications

After the years 1965–70, during which H. Whitney laid the foundations of
Whitney stratification theory [42] and R. Thom and J. Mather ([39] and
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[21, 22]) those of abstract stratified sets as the larger class of desirable sin-
gular spaces, M. Goresky was preparing his Ph.D. thesis directed by R.
MacPherson. The goal of his thesis, Geometric Cohomology and Homology
of Stratified Objects [14], was to introduce new geometric homology and co-
homology theories, for a stratified space X , in which cycles and cocycles of
X could be represented by substratified spaces with the same type of singu-
larity as X . In this theory a well adapted stratified transversality theorem
would allow to find the geometric cap product as intersection of a cycle
and a cocycle in transverse position and many other very nice geometric
interpretations of the algebraic operations (see also §4).

We will talk later on about the stratified transversality results, state-
ments and techniques which one can find in the thesis of Goresky, an ex-
citing source of interesting results and nice and useful ideas.

We will present first the geometric homology theories published in 1981
in Whitney Stratified Chains and Cochains [15], in a revised version with
respect to the thesis of 1976, and the stratified transversality theorem un-
derlying this revised theory of 1981.

In this 1981 paper, Goresky re-defines his geometric homology and co-
homology theories only for Whitney (b)-regular stratifications (and not for
abstract stratified sets) and gives a new completely revised version of the
previous stratified transversality statements and proofs.

For X = (A,Σ) a (b)-regular stratified space of support A ⊆ Rn,
Goresky introduces the homology and cohomology sets WHk(X ) and
WHk(X ) (called Whitney homology and cohomology theory from [27]): the
elements of WHk(X ) and WHk(X ) are equivalence classes of Whitney sub-
stratified k-cycles and k-cocycles of X with respect to a Whitney stratified
cobordism.

A Whitney stratified k-cycle ξ = (V, z) of X is a compact (b)-regular
k-substratified object V of X together with an orientation of V, that is an
element z =

∑
j njV k

j of the free abelian group Ck(V) on Z on the oriented
k-strata {V k

j }j of V whose boundary is 0.
A cobordism between two stratified k-cycles ξ and ξ′ is defined as a

(b)-regular (k + 1)-S.S.O. ζ of X × I (I stratified by {{0}, ]0, 1[, {1}}) with
boundary ∂ζ = ξ × {0} − ξ′ × {1} (modulo reductiona).

A substratified object W of X satisfies the π-fibre condition (with respect

aThe reduction of a chain or of a cochain ξ = (V, z) with z =
P

j njV k
j is the chain or

the cochain ξ/ = (V/z , z) where V/z = ∪nj !=0V k
j = ∪nj !=0V k

j . Every chain and cochain
is identified with its reduction.
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to a fixed system of control data of X , F = {(πS , ρS , TS)|S stratum of X})
if there exists an ε > 0 such that for every stratum S of X one has :
π−1

S (W ) ∩ TS(ε) = W ∩ TS(ε). This condition allows Goresky to define for
each k-costratum D (i.e. a connected component of the union of all the
strata embedded in X with codimension k) a tubular neighbourood TD of
D in A. Thinking of TD as a normal fiber bundle of D in X , an orientation
of its unit sphere bundle defines a coorientation of D.

A Whitney stratified k-cocycle θ = (W, c) of X is then defined as a π-fibre
Whitney substratified object W of X , embedded in X with codimension k
together with a k-coorientation of W, that is an element c =

∑
s nsDk

s

of the free abelian group Ck(W) on the oriented k-costrata {Dk
s}s of W,

and whose coboundary is 0. A cobordism between two stratified k-cocycles
θ and θ′ is defined as a (b)-regular (k +1)-π-fibre S.S.O. θ of X × [0, 1] with
boundary δθ = θ × {0} − θ′ × {1} (modulo reduction(*)).

The fundamental reason for which such homology and cohomology sets
exist is that every (b)-regular S.S.O. V admits a system of control data [21].
This again works by considering for X and V abstract S.O. (see [14] and
[29, Chapter IV, p. 134] for details).

To simplify the notations, we will omit the orientation z of a cycle ξ
and the coorientation c of a cocycle θ and will write V or V (the support
of V) for ξ and W or W (support of W) for θ.

Goresky introduced the two homology and cohomology representation
maps

Rk : WHk(X ) → Hk(A) and Rk : WHk(X ) → Hk(A)

analogues of the Thom–Steenrod map between the differential bordism and
the singular homology of X = (A,Σ).

The stratified transversality theorem underlying this theory is Goresky’s
“Transversality Lemma” (5.3 [15]) that we include with its original proof
and notations:

Theorem 3.1. Suppose X1 and X2 are Whitney stratified subsets of two
manifolds M1 and M2 (respectively). Fix a system of control data on X1 and
X2 and let f : X1 → X2 be a stratified map. Suppose Y ⊆ X2 is a geometric
cocycle. Suppose either (a) f is controlled or (b) f is the restriction of a
smoth map f̃ : M1 → M2. Then Y is cobordant to a cocycle Y ′⊆X2 such
that f is transverse to Y ′.

Proof. Assume by induction on k that Y is cobordant to a cocycle Yk such
that f is transverse to Yk ∩ (X2)k where (X2)k denotes the k-skeleton of
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X2. We will find a controlled vector field η on X2 with (controlled) flow
Ft : X2 → X2 such that Yk+1 = F1(Yk) satisfies the induction hypothesis.

Under either assumption (a) or (b) above there is a neigbourhood U of
(X2)k such that f is transverse to Yk ∩ U .

Let S = (X2)k − (X2)k−1, by Sard’s Theorem [13] there is a controlled
vector field ηS on S with time 1 flow FS : S → S such that ηS vanishes near
(X2)k and such that f is transverse to FS(Yk). Take η to be any controlled
lift [12], [21] of ηS .

This proof was for a long time and until 2000, not understandable to
me (and to my knowledge to various other mathematicians). Thus I talk in
the introduction of my Ph.D. thesis [29] 1997, of a “mistake in the Goresky
proof . . .”. But after my joint work with D. Trotman and A. du Plessis
[31] I no longer think there is a mistake.

The main reason for which this proof was obscure to me was the fact
that if we would first obtain a transversalizing map FS : S → S such that
Yk+1 = FS(Yk) is transverse to f , then after there is no way to replace the
choice of FS in some open dense set of diffeomorphisms to obtain that (*):
“FS is also the time 1 flow F1 of a vector field (not depending on time)”.

This impossibility comes from a theorem of C. Freifeld [10] who re-
marked first a phenomenon better explained later by J. Milnor [25] 1980
that “in the infinite dimensional space Diff(S, S) the maps having the
property (*) above, i.e. lying in a one parameter group of diffeomorphisms
of S, do not fill a neighbourhood of the identity 1S” (more about this diffi-
culty in the introduction of [29]).

On the other hand one could say : in the aim of Goresky the map FS

has to be obtained at the same time as the vector field ηS of which FS is
the time 1 flow.

But then how to do it ? In this sense the reference given by Goresky
[13] on Sard’s theorem is really not clear and very far from orienting the
reader to an understandable continuation of the proof. Also remark that
for a vector field η to have a flow defined ∀t ∈ I is equivalent to asking that
its flow is defined for every t ∈ R (i.e. that η is complete).

Such difficulties, motivated me jointly with A. du Plessis and D. Trot-
man in 2001 and 2005 [31, 32] to find two new and different generalisations
of this stratified transversality theorem : the first by considering (for the ηS)
time-dependent vector fields (whose flows are not necessarily one parame-
ter groups !) and the second by putting together some methods sketched in
the appendix of Goresky’s thesis [14] and in his 1987 book [17] which uses
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a very fine idea of Abraham [1] to apply Sard’s theorem on the space of
vector fields on a manifold S and about which we will come back later.

After having established the transversality theorem underlying his whole
theory Goresky deduces first of all the important theorem which gives the
bijectivity of the cohomological representation.

Theorem 3.2. For every Whitney stratification X , the cohomology repre-
sentation map Rk : WHk(X ) → Hk(X ) is a set bijection.

The corresponding homology theorem below does not follow from the
transversality theorem, however the proof (of the relative to the bound-
ary version) was important in proving Theorem 3.2 above so we like to
recall it underlining that it was proved by Goresky only for X the trivial
stratification of a manifold.

Theorem 3.3. If X = {M} is a trivial stratification of a manifold possibly
with boundary, the homology representation map Rk : WHk(X ) → Hk(M)
is a set bijection.

The same statement for X an arbitrary (b)-regular stratification :

Conjecture 3.1. If X is a Whitney stratification the homology represen-
tation map Rk : WHk(X ) → Hk(M) is a set bijection.

remains a famous problem of Goresky (thesis [14] 1976 and [15] 1981) still
unsolved. On the other hand, one easily sees that, if one proves the cele-
brated conjecture :

Conjecture 3.2. Every Whitney stratification X admits a Whitney trian-
gulation.

this will also give a solution of the above conjecture 3.1 of Goresky.

Then, using also the following proposition :

Proposition 3.1. Suppose f : X1 → X2 is a controlled stratified map and
Y is a codimension k geometric cocycle in X2 such that f is transverse to
Y. Then f−1(Y) is a π-fibre subset of X1 which admits a canonical Whit-
ney stratification. The coorientation of Y pulls back to a coorientation on
f−1(Y) which then becomes a geometric cocycle f−1(Y) and it represents
the cohomology class f∗([Y]) in Hk(X1).
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Goresky’s transversality theorem, again makes richer this geometric theory.
It also allows Goresky to prove first the following theorem on the cohomol-
ogy cup product :

Theorem 3.4. Suppose Y1 and Y2 are geometric cocycles in a Whitney
object X . Then Y2 is cobordant to a cocycle Y ′

2 which is transverse to Y1.
In this case Y1 ∩ Y ′

2 is a geometric cocycle with the product coorientation
and [Y1 ∩ Y ′

2] = [Y1] ∪ [Y ′
2].

and then the proposition stating that also the cap product has, thanks to
the transversality theorem, a nice geometric meaning :

Proposition 3.2. Suppose Y is a geometric k-cocycle in X and Z is a
geometric p-cycle. Then Y is cobordant to a cocycle Y ′ which is transverse
to Z. Using the product orientation on (p− k)-strata of Y ′ ∩ Z (which all
have the form (p-costratum of Y) ∩ (k-stratum of Z)), Y ′ ∩ Z becomes a
geometric cycle and it represents the cap product [Y] ∩ [Z] ∈ Hp−k(X ).

4. Further geometric applications of the Goresky Theorem

Using again the transversality theorem of Goresky, in 1994 [27], I improved
the Goresky theories by introducing in the homology and cohomology sets
WH∗(X ) and WH∗(X ) a geometric sum operation which geometrically
means transverse union of cycle and/or of cocycles below denoted by ∪t

(see §5.2 for the rigorous definitions of ∪t and ∩t). This was done in the
same spirit as for the Moving Lemma in the Chow Group theory for the
algebraic cycles of an algebraic manifold [11] and in such a way that the
sets WHk(X ) and WHk(X ) become abelian groups and the representation
maps Rk and Rk group isomorphisms.

Again in the homology case the full theorem was obtained only when
X = {M} reduces to a smooth manifold.

In [27] I complete the Goresky theories with a slight algebraization and
by introducing the coefficients in an abelian group G and in [27, 28] showing
that the most important cohomology operations, the Steenrod squares and
the Steenrod p-powers (p an odd prime) can be realized through a geometric
construction based on transversality methods. Then starting from [27, 28]
I refer to WH∗ and WH∗ as Whitney Homology and Cohomology theories.

All geometric applications of the Goresky transversality theorem (re-
writing more nicely his theorems on the cup and cap product), together
with the improvements in [27, 28] can be summarized as follows :
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Theorem 4.1. If X is a smooth manifold, the sum operation defined in
WHk(X ) by :

+ : WHk(X )×WHk(X ) → WHk(X ) , [V1] + [V2] = [V1 ∪t V ′
2]

where V ′
2 is a cycle cobordant to V2 and transverse to V1 (which exists by

the transversality theorem) is a well defined group operation in WHk(X ) for
which the Goresky homology representation map Rk : WHk(X ) → Hk(X )
is a group isomorphism.

Theorem 4.2. For every Whitney object X the sum operation defined in
WHk(X ) by:

+ : WHk(X )×WHk(X ) → WHk(X ) , [Y1] + [Y2] = [Y1 ∪t Y ′
2]

where Y ′
2 is a coycle cobordant to Y2 and transverse to Y1 (which exists by

the transversality theorem) is a well defined group operation in WHk(X )
and the Goresky cohomology representation map Rk : WHk(X ) → Hk(X )
is a group isomorphism.

Theorem 4.3. For every stratified controlled map f : X1 → X2 between
Whitney stratifications there is an induced map f∗ in Whitney cohomology
defined by :

f∗ : WHk(X2) → WHk(X1) , f∗([Y]) = [f−1(Y ′)]

where Y ′ is cobordant to Y and transverse to f , and exists by the transversa-
lity theorem (f∗ is given by the transverse preimage of a geometric cocycle).
Moreover with respect to the transverse sum in WHk(X2) and WHk(X1),
f∗ : WHk(X2) → WHk(X1) is a group homomorphism.

Theorem 4.4. In the geometric cohomology theory WH∗ the cup product
is defined by

∪ : WH∗(X )×WH∗(X ) → WH∗(X ) , [Y1] ∪ [Y2] = [Y1 ∩t Y ′
2]

where Y ′2 is cobordant to Y2 and transverse to Y1 and exists by the transver-
sality theorem. I.e. the cup product is given by the transverse intersection
of two geometric cocycles.

Proposition 4.1. In the geometric theory WH∗,WH∗ the cap product is
defined by

∩ : WHp+k(X )×WHk(X ) → WHp(X ) , [V] ∩ [Y] = [V ∩t Y ′]

where Y ′ is cobordant to Y and transverse to V and exists by the transver-
sality theorem. I.e. the cap product is the transverse intersection of a cocycle
with a cycle.
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Finally, although such a nice geometric interpretation of the cross product
[15] and of Poincaré Duality [29] does not come from transversality we like
to recall it :

Proposition 4.2. In cohomology WH∗ the cross product of cocycles is
defined by

× : WHk(X )×WHh(Y) → WHk+h(X×Y) , [Y1]×[Y2] = [Y1×Y2] .

I.e. the cross product is the cartesian product of two cocycles of X and Y.

Proposition 4.3. If X is a n-manifold the (inverse map of the) Poincaré
Duality isomorphism D is the “identity” on the representative cocycles :

D : WHk(X ) → WHn−k(X ) , D([V]) = [V] .

I.e. it is obtained by interpreting each k-cocycle as a (n−k)-cycle of X .

This nice geometric interpretation exists still when X is not a manifold
but just a pseudomanifold (because in this case the the fundamental class
[X ] is a cycle of X ).

Finally, in Whitney cohomology there exists a geometric realisation of
the main cohomology operations, the Steenrod Squares {Sqα}α [27] and the
Steenrod p-powers {Pα}α (p prime odd) [28] based on stratified transver-
sality methods.

Theorem 4.5. Let A : X 2 × Sh → X 2 × Sh be the Z2-action defined by
A(x, y, t) = (y, x,−t)), ϕ the map ϕ([W ]) = [(W 2 × Sh)/Z2], ∆ the map
∆(x, [t]) = [((x, x), t)] and for every α, prk+α the Gysin homomorphism.

Then independently from h ≥ k, the composition map:
Sqα : WHk(X ) ϕ→ WH2k((X 2×Sh)/Z2)

∆∗→ WH2k(X×Ph) ∼=

∼=
∑

i+j=2k

WHi(X )⊗WHj(Ph)
prk+α→ WHk+α(X )

is a geometric construction of the Steenrod squares {Sqα : WHk(X ) →
WHk+α(X )}X,α,k in Whitney cohomology. I.e. we have :

1) Sqα is a group homomorphism ;
2) f : X → Y is a controlled map ⇒ Sqαf∗ = f∗Sqα ;
3) k = α ⇒ Sqα([W ]) = [W ] ∪ [W ] is the cup product ;
4) Sq0 = 1WHk(X) is the identity map ;
5) Sqi([W ]× [W ′]) =

∑
α+β=i Sqα([W ])× Sqβ([W ′]) ;

6) α > k ⇒ Sqα([V ]) = 0.
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Theorem 4.6. Let p ∈ N be an odd prime, h ∈ N, odd so Sh ⊆ Cr,
r = (h+1)/2 and Lp = Sh/Zp be the Lens space quotient of Sh with respect
to the multiplication for ei 2π

p in Cr.
Let A : X p × Sh → X p × Sh be the Zp-action defined by

A((x1, . . . , xp), z) = ((xp, x1 . . . , xp−1), ei 2π
p z), ϕ the map defined by

ϕ([W ]) = [(W p × Sh)/Zp], ∆ the map ∆(x, [z])= [((x, . . . , x), z)] and for
every α′ = k + 2α(p− 1), prα′ the Gysin homomorphism.

Then, independently from h ≥ (k − 2α)(p− 1), the composition map:

Pα : WHk(X ) ϕ→ WHkp((X p×Sh)/Zp)
∆∗→ WHkp(X×Lh

p) ∼=

∼=
∑

i+j=kp

WHi(X )⊗WHj(Lh
p)

prα′→ WHα′(X )

is a geometric construction of the Steenrod p-powers {Pα : WHk(X ) →
WHα′(X )}X,α,k in Whitney cohomology. I.e. we have :

1) Pα is a group homomorphism ;
2) f : X → Y is a controlled map ⇒ Pαf∗ = f∗Pα ;
3) k = 2α ⇒ Pα([W ]) = [W ] ∪ [W ] ∪ · · · ∪ [W ] is the cup product k

times of [W ] ;
4) P 0 = 1WHk(X) is the identity map ;
5) P i([W ]× [W ′]) =

∑
α+β=i Pα([W ])× P β([W ′]) ;

6) 2α > k ⇒ Pα([W ]) = 0.

5. Improvement of the Goresky Theorem. Applications.
Open problems

Goresky’s transversality theorem applies to those substratified objects W
of X satisfying a π-fibre condition with respect to a fixed system of control
data F = {(πX , ρX) : TX → X × [0,∞)}X∈Σ of X , and to a stratified map
g : Y → X which is controlled with respect to two systems of control data.

The π-fibre condition says that W is locally, near each point x of A,
a union of fibres of the projection πS : TS → S where S is the stratum
containing x, while the control condition on the map g imposes a similar
property for the fibres of g (and of πS). These conditions were used by
Goresky to preserve transversality with respect to g of a deformation W ′

of W in his inductive proof. As explained above, Goresky’s transversality
theorem has been shown to be very useful in several important applications
[15], [27, 28]; but the hypotheses of π-fibre on W and control on g prevent
a wider use.
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Definition 5.1. Let X = (A,Σ) be a stratified space. A stratified isotopy
of X (or of A) Φ : A×I → A (denoted also {Φt : A → A }t∈I) is a stratified
map such that for every t ∈ I, the map at time t, Φt : A → A is a stratified
homeomorphism.

Clearly, if {Φt}t∈I and {Ψt}t∈I are stratified isotopies, so is {Ψt ◦Φt}t.

Definition 5.2. Let W = (W,ΣW) and W ′ = (W ′,ΣW′) be two S.S.O. of
a stratified space X = (A,Σ). We say that W ′ is a deformation by isotopy
of W in A if there exists a stratified isotopy Φ : A × I → A such that
Φ0 = 1A and W ′ = Φ1(W).

If Φ : A × I → A is a stratified isotopy of X = (A,Σ) and W is a
substratified object of X , then for each t ∈ I the image W ′ = Φt(W) is a
substratified object with stratification induced by Φt and W ′ is a deforma-
tion by isotopy of W.

Let h, h′ : Y → X be two stratified maps. We say that h′ is a deforma-
tion by isotopy of h in X if there exists a stratified isotopy Φ : X × I → X
such that Φ0 = 1X and h′ = Φ1 ◦ h , i.e. h′ is the deformation via Φ and at
time t = 1 of h.

“Deformation by isotopy” of S.S.O. of X and of maps h, : Y → X define
clearly equivalence relations.

In two recent papers [31, 32], A. du Plessis, D. Trotman and myself, gave
two different proofs of the stratified transversality theorem below, of which
we recall here the ideas of the proofs.

Theorem 5.1. Let X = (A,Σ) be an abstract stratified set, or a (w)-regular
nice stratified subset of a manifold, and let g : Y → X be a stratified map.

Then for each stratified map h : Z → X and each open neighbourhood
U of h(Z) in X , there exists a deformation by isotopy h′ of h in X which
is transverse to g in X and such that h′(Z) ⊆ U . If C is a closed subset of
X on which h is transverse to g then one can obtain that h′ = h on C.

Proof. Both proofs are given by induction on the dimension k ≤ n =
dimX of the skeleton Xk of X by constructing a stratified vector field
ζ = ζk of X having a time 1 flow Φ1 = Φk

1 defined on the whole of X and
such that the map h′k = Φ1 ◦ h satisfies the inductives hypotheses.

To obtain this, ζ has to be 0 on Xk−1 (so Φ1|Xk−1 = id) and the restric-
tion f = Φ1 S : S → S where S = Xk −Xk−1 has to be a diffeomorphism of
S such that f ◦ h is transverse to g.

Outlines of proof in [32]. We first prove that the set of such diffeomor-
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phisms f of S is open and dense in the connected component Diff0(S, S)
of 1S in Diff(S, S). Then we apply the techniques used by Mather [20]
to show that infinitesimal stability implies stability, and using the fam-
ilies of geodesics of S we prove that “There exists a (sufficiently small)
neighbourhood U ′ of 1S ∈ Diff0(S, S) such that every f ∈ U ′ is the
time 1 flow f = Φ1 of a time-dependent vector field ζ = ζ(x, t) such that
limx→Xk−1 ζ(x, t) = 0” (we stress that this property is completely false [10]
without the precision time-dependent as we said in §3).

This allows us to obtain a “Stratified Extension Theorem” [32] holding
for the diffeomorphisms f ∈ U ′ for which the inductive step follows easily
by extending on the whole of X the time-dependent vector field ζ(x, t). This
is possible by adapting the standard techniques of lifting of stratified vector
fields [7, 21, 22, 34, 38]. It was a merit of Andrew du Plessis to discover
this key idea of using Mather time-dependent vector fields when he was
examiner for my Ph.D. thesis directed by D. Trotman in the summer of
1997.

Another way to prove the stratified transversality theorem could be the
following. In [30], using a theorem of D. McDuff [26] on the classification of
the distinguished subgroup of the diffeomorphisms of a compact manifold
with boundary, I extend to non-compact manifolds a well known Epstein–
Thurston theorem and show that :

Theorem 5.2. If S = intM is a manifold, diffeomorphic to the interior
of a compact manifold with boundary, the image of the exponential map
generates Diff0(S, S). In particular every f ∈ Diff0(S, S) can be written
as a composition f = φ1

1 ◦ · · · ◦φs
1 of diffeomorphisms φi

1 which are the time
1 map of the flow φi of a vector field ζi on S.

Question 5.1. If limx→∂S f = 1∂S can we obtain in theorem 5.2, that
limx→∂S ζi = 0, for every i = 1, . . . , s ?

If the answer was yes, then by the usual techniques of stratified lift-
ing of vector fields one would deduce easily a new Extension Theorem for
stratified homeomorphisms, and without using time-dependent vector fields.
This seems to me to depend on an apparently difficult improvement of the
McDuff theorem.

Proof. Outlines of the proof in [31] of Theorem 5.1. We construct Φ = Φk

by the following steps.
First we prove that :
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i) “Every smooth manifold S, admits a finite family of smooth and com-
plete vector fields v1(x), . . . , vr(x) which span TxS for every x ∈ S and there
exists a sufficiently small open ball B = B(0, ε) ⊆ Rr such that for every
b = (b1, . . . , br) ∈ B, the vector field ζb =

∑
i bivi is again complete”.

Then we prove that :
ii) “The smooth map G : S ×B → S defined by G(x, b) = ψb

1(x), where
ψb : S × R → S is the flow of ζb, satisfies the submersivity of all partial
maps Gx : B → S defined by Gx(b) = ψb

1(x)”.
Finally we use a very nice and ingenious way to apply Sard’s Theo-

rem, discovered by R. Abraham [1] (see also the 1987 book [17], p. 51 for
comments) to prove that:

iii) “If j : B → C∞(S, S) denotes the map j(b) = Gb, then the subset
M = {b ∈ B | j0Gb is not transverse to h|h−1(S) × g|g−1(S)}, where j0Gb is
the graph of the map Gb = ψb

1, has measure zero in Rr.
So taking b ∈ B − M the diffeomorphism f = Gb = ψb

1 : S → S is
transverse to h|h−1(S)×g|g−1(S). Thus f ◦h|h−1(S) is transverse to g|g−1(S)”.

Again, an extension of ζb on the whole of X (to obtain Φ1 = Φk
1), and

the conclusion of the inductive step follow by the usual techniques of lifting
of vector fields.

In this proof (of [31]) we obtain as Goresky hoped in his transver-
sality theorem ([15], 5.3.) a diffeomorphism f which is transversalizing
and simultaneously the time 1 map ψb

1 of the flow of a vector field ζb

not depending on time.
I like also to make precise here that :

(1) : part of this idea iii) appears already, in Lemma 6.3.4, at the end
of Goresky’s thesis, where the author gave the following proposition and
comment [14, p. 183] :

Proposition 5.1. Suppose W1 and W2 are Whitney stratified objects in a
manifold M and U an open subset of M such that W1 ∩U is transverse to
W2 ∩U . Let K be a closed subset of U . Then there is a smooth vector field
η on M , η|K ≡ 0 such that Φ1(W1) is transverse to W2 where φ1 : M → M
is the diffeomorphism generated at the time 1 by the flow of η.

Comment. “Note, however, that if η does not have a compact support
then the one-parameter group of diffeomorphisms φt : M → M do not
describe a continuous path in Diff(M) under the C1-topology. This lemma
is, therefore not a suitable substitute for the transversality theorem”.
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So part i) and ii) of our proof in [31] fill this gap and allow one to obtain
a complete proof of a more general stratified transversality theorem.

(2) : the idea to use the Abraham method to apply Sard’s Thorem,
appeared again in a better explained and formalized way in 1987 [17] (many
years after the thesis) but also in this case is developed only in an example
(Example 1.3.7. p. 39) and in the very particular case where the manifold
S was the projective space CPn which is a compact manifold.

On the other hand, the strata of a stratification are not in general com-
pact manifolds, and moreover for compact manifolds, the properties i) and
ii) become easy to prove.

Finally, using the definitions of Goresky–MacPherson in [17] the joint
proofs of the i) and ii) may be stated in a more elegant way as follows :

Theorem 5.3. Every smooth non compact manifold S admits a submersive
family G = {Gb}b∈B of self maps.

I like to recall here that (after we read and re-read Goresky’s Ph.D.
thesis), it was the merit of David Trotman in the summer 2000, to point-
out that this was the good property to prove for a non compact manifold
(such as the generic stratum of a regular stratification) in order to obtain
diffeomorphisms which at the same time are transversalizing and lie in a
one parameter group (this happened while we were working to answer L.
Siebenmann, who asked us if we knew another way to prove the stratified
transversality theorem which did not use time-dependent vector fields).

Given the technical and historical difference between our two proofs of
Theorem 5.1, which extend (and also clarify) the Goresky transversality
theorem, we now look at the main corollaries of this theorem.

Suppose now, as in the Transversality Lemma of Goresky, that W is a
substratified object of X , and that the map h = i : W ↪→ X is the stratified
inclusion of W in X , and consider the map h′ = Φ1 ◦ h.

Because the transversalizing deformation Φ1 is a stratified homeomor-
phism, and hence is a diffeomorphism on each stratum, one can easily
see that the condition “h′ = Φ1 ◦ h is transverse to g” may be reread
as “W ′ = Φ1(W) is transverse to g”. Thus we have the following corollary
which generalizes the Transversality Lemma of Goresky, without the π-fibre
condition on the substratified object W to be deformed.

Corollary 5.1. Let X be an abstract stratified set, or a (w)-regular nice
stratified subspace of a manifold, and g : Y → X a stratified map defined
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on a stratified space Y.
Then for each substratified object W of X and each open neighbourhood

U of W in X , there exists a deformation by isotopy W ′ of W which is
transverse to g and such that W ′ ⊆ U . Moreover if C is a closed subset of
X on which W is transverse to g then we can obtain that W ′∩C = W∩C.

Corollary 5.1 holds for stratifications and stratified maps that are more
general than those of the Transversality Lemma of Goresky [15]. For we do
not require either of the two conditions :

i) that g be controlled with respect to two fixed systems of control data
T1 et T2 respectively of Y and X or that g be the restriction of a smooth
map g̃ : M1 → M2 between two manifolds containing respectively Y and X ;

ii) that W satisfy the π-fibre condition.

The π-fibre condition (or to be more precise its version stratum by
stratum redefined in [29, p. 160]) is a very strong restriction on the ge-
ometry of the substratified object W of X and ensures that (b)-regularity
be preserved as was shown in [15]; possibly other regularity conditions are
preserved. For example this is the case for (a)-regularity, but it could also
be true for (w)-regularity or (c)-regularity.

In Corollary 5.1, as we do not consider any regularity condition for W
other than being a substratified object of X , the problem of the preservation
of such a condition by deformation by isotopy does not arise. We will talk
in §5.1. about this delicate problem.

Corollary 5.1 was also used by M. Grinberg, when g : Y ↪→ X is the
inclusion map and dim(Y ∩ S) + dim(W ∩ S) < dim S for every stratum S
of X , to prove the existence of self-indexing stratified Morse functions on
complex algebraic varieties ([18], 2005).

Corollary 5.2. Let X = (A,Σ) be an abstract stratified or a (w)-regular
nice stratified subspace of a manifold, and V a substratified object of X .

For each substratified object W of X , and each open neighbourhood U
of the support W of W in A there exists a deformation by isotopy W ′ of
W, transverse to V in X , with support W ′ ⊆ U .

If Z is a closed subset of A at each point of which W is transverse to
V one can obtain moreover that the transversalizing isotopy Φ : A× I → A
satisfies Φt|Z = id for all t ∈ I and so W ′ ∩ Z = W ∩ Z.

Remark 5.1. K. Bekka has shown [3] that (c)-regular stratifications admit
a system of control data; so both (b)-regular and (c)-regular stratified sets
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are abstract stratified sets and hence Theorem 5.1 and its corollaries 5.1
and 5.2 hold for them.

Remark 5.2. Because (L)-regular nice stratifications are (w)-regular [38],
Theorem 5.1 holds also for Mostowski’s (L)-regular stratified spaces.

5.1. Preservation of regularity after deformation. Open
problems

In general a deformation by isotopy W ′ = Φ1(W), without supposing the
π-fibre condition on W, does not preserve any regularity condition of W
except “to be an abstract stratified set”.

In [31] we introduce then the following notion of differentiability :

Definition 5.3. We say that a stratified morphism f : X → X ′ is semid-
ifferentiable at x of X ∈ Σ if for each stratum Y > X (i.e. Y ⊇ X)
and for each sequence {(yn, vn)}n in the tangent space TY we have that
limn→∞(yn, vn) = (x, v) ∈ TX implies limn→∞ fY ∗yn(vn) = fX∗x(v).

We say f is semidifferentiable on a stratum X iff it is semidifferentiable
at every x ∈ X and that f is semidifferentiable iff it is semidifferentiable
on every stratum X ∈ Σ.

Semidifferentiability (at x) is weaker than C1-differentiability of f (at
x) and provides sufficient conditions for a stratified homeomorphism (C1

diffeomorphism on each stratum) to preserve some regularity of stratified
subspaces. In [31] we show :

Theorem 5.4. Let X = (A,Σ) be a (c)-regular stratified space, with A a
closed subset of a C∞ manifold M and let g : Y → X be a stratified map
defined on a stratification Y.

For each substratified object W of X and each open neighbourhood U
of W in A there exists a stratified isotopy Φt : X → X such that the
deformation W ′ = Φ1(W) is transverse to g, and W ′ ⊆ U .

If moreover Φ1 is semidifferentiable, then:
i) W (c)-regular ⇒ W ′is (c)-regular;
ii) W (a)-regular ⇒ W ′ is (a)-regular.

On the other hand, we do not know currently a sufficient condition for
Φ1 to be semidifferentiable. The use of continuous liftings of vector fields in
the transversality theorem is a necessary condition [34]. In any case, without
assuming the π-fibre condition on W, the following problem remains open:
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Problem 5.1. Can we obtain a stratified transversality theorem in which
the deformation by isotopy W ′ = Φ1(W) transverse to V preserves some of
the regularity conditions of W such as (a)- or (b)- or (c)- regularity ?

This problem could be solved if one proves the smooth version of the
Whitney fibering conjecture [35, 36] :

Conjecture 5.1. Every Whitney stratification X , is such that for each
point x in a stratum X of X , there exists a neighbourhood U of x in A which
admits an l-dimensional stratified foliation F = {Fy}y (where l = dim X
and Fy denotes the leaf containing y) such that for every x′ ∈ U ∩ X,
limy→x′ TyFy = Tx′X.

5.2. Stratification of the transverse union and intersection.
Open problem

Let W ′ = (W ′,ΣW′) be a deformation of W = (W,ΣW) transverse to
V = (V,ΣV) and {Vα}α, {W ′

β}β the families of strata of W ′ and V.
If C(H) denotes the family of the connected components of a space

H, then V ∪W ′ and V ∩W ′ have natural partitions in smooth manifolds
defined by :

ΣV ∩W ′ = "Vβ⊆V ,W ′
α⊆W ′ C(Vβ ∩W ′

α)

and respectively by

ΣV ∪W ′ = "Vβ⊆V ,W ′
α⊆W ′C(Vβ −W ′

α) " C(W ′
α − Vβ) " C(Vβ ∩W ′

α)

called transverse intersection V ∩t W ′ and transverse union V ∪t W ′ of V
and W ′. Unfortunately, as we show in [31] (Examples 3.17 and 3.16), these
partitions do not define in general natural stratifications for V ∩W ′ and
V ∪W ′, for two reasons:

i) in general V ∩t W ′ and (thus) V ∪t W ′ are not locally finite ;
ii) in general V ∪t W ′ does not satisfy the frontier condition.

It follows that if f : X1 → X2 is a stratified map, not necessarily con-
trolled, and W a substratified space of X2, not necessarily π-fibre, in general
it is not true that f−1(W) is a substratified space of X1. So the good mor-
phisms for Whitney cohomology WH∗ have to be controlled maps.

It also follows that we cannot define a transverse sum operation in the set
WHk(X ) when X is an arbitrary Whitney stratification (not a manifold).
This is the main raison for which Whitney homology WH∗ (whose cycles
are not defined as π-fibres) is a theory less rich in geometric interpretations
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than Whitney cohomology WH∗. This obstruction could may be overcome
by answering the following question :

Problem 5.2. Is it possible to find two deformations by isotopy V ′ =
Φ1(V) and W ′ = Ψ1(W) such that V ′ is transverse to W ′ and moreover
V ′ ∩t W ′ and V ′ ∪t W ′ are locally finite and satisfy the frontier condition,
defining so two stratifications ?

A positive answer to this question would give the possibility to structure
the homology set WHk(X ) as an abelian group with the transverse sum
operation when X is an arbitrary Whitney stratification, and this group
structure could be a powerful tool to approach in an algebraic way the
Goresky conjecture (§3, Conjecture 3.1).

For a manifold transverse to all strata of an analytic stratification Σ
such that for each stratum S ∈ Σ, S and S−S are analytic sets in 1972 D.
Chéniot [6], without assuming any regularity condition for Σ, proved that :

Theorem 5.5. Let V be a complex analytic set, in an open set U of Cn,
equipped with an analytic stratification Σ. Let M be a complex analytic
submanifold of U , transverse to every stratum of Σ.

Then the trace ΣM∩V = {S∩M | S ∈ Σ} of M over Σ is a stratification
(so locally finite and satisfying the frontier condition).

Here the stratifications are intended by considering the strata to be not
necessarily connected, with so some difference with respect to our defini-
tions. In such a complex analytic context the essential property used was
that “for each stratum S of V , one has S ∩M = S ∩M” ; D. Chéniot also
proves that this key property is a sufficient hypothesis to obtain the conclu-
sion of theorem 5.5 also for V and M real analytic [6]. This key property
is always satisfied when Σ is a real or complex Whitney stratification.

6. Transverse intersections and other applications

The problem of knowing when a transverse intersection and a transverse
union is a good stratification also arises for knowing when W∩tV and W∪tV
preserve the regularity condition of W and V. This becomes already very
useful in the simpler case when the stratification of the ambient space X
and/or one of the two subspaces (as an example V) reduce to two manifolds.

In 1976 C. G. Gibson [12] proved that Whitney (b)-regularity is pre-
served by transverse intersection in a manifold :
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Theorem 6.1. Let V1, . . . ,Vn be Whitney stratifications in a smooth man-
ifold M . If V1, . . . ,Vn are in general position then V1∩· · ·∩Vn is a Whitney
stratification.

More recently in 2002, P. Orro and D. Trotman [37] gave a unique
proof of the corresponding theorem holding for many regularity conditions
(although for the (a + δ) regularity the result was first proved in 2000, [5]):

Theorem 6.2. The regularity conditions (a), (b), (w), (a+ δ), (a+ re) for
every e ∈ [0, 1[, are invariant by transverse intersection in a manifold of
two stratifications with C2 strata.

This result was essential in proving the main theorem of [37] :

Theorem 6.3. Let Z be a closed set in a manifold, stratified by Ck strata,
k ≥ 2 and (a + re)-regular, with e ∈ [0, 1[, relatively to a stratum Y .

For every y ∈ Y , the fibre (CY Z)y of the normal cone CY Z, coincides
with the fibre Cy(Zy) of the tangent cone to the fibre Zy = Z ∩ π−1(y) of a
C1 retraction π over Y .

6.1. Application to abstract stratified and (c)-regular
homology

For (c)-regular stratifications, in 1991 K. Bekka [3] proved the following
very useful propositions :

Proposition 6.1. Let f : M → N be a C1 map between C1-manifolds
and let W ⊆ N a (c)-regular stratified space. If f is transverse to W then
f−1(W) defines a (c)-regular stratified subspace of M .

Proposition 6.2. Let M be a C1-manifold and let V,W ⊆ M be two
(c)-regular stratified spaces.

If V and W are transverse in M then the transverse intersection V∩tW
and the transverse union V ∪tW are again two (c)-regular stratified spaces.

Proposition 6.3. Let f : M → N be a C1 map between C1-manifolds and
V ⊆ M and W ⊆ N two (c)-regular stratified spaces.

If f sends V transversally on W then f−1
|V (W) = V ∩t f−1(W) is a

(c)-regular stratified space.

For abstract stratified sets, the proofs of the corresponding statements,
already obtained by Goresky in his thesis [14], are again true with similar
proofs. Thanks to these results (and following the ideas of Goresky in [15])
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one can construct new homology and cohomology theories in which the
ambient space X and its cycles V and cocycles W are Thom–Mather ab-
stract stratified sets (see also [14]) and/or Bekka (c)-regular stratifications
(instead of Whitney (b)-regular stratifications [15]).

One obtains so the new theories AH∗, AH∗ and BH∗, BH∗ [4, 29]
(instead of WH∗, WH∗ of [15]). In these new theories, Theorem 5.1 with its
corollaries 5.1 and 5.2, play again the role of the fundamental transversality
theorem, necessary to give a geometrical meaning to the homology and
cohomology algebraic operations. In this way, all geometric results of §3
are again true for the abstract stratified homology AH, and most of them
also hold for the (c)-regular homology BH [4], [29, Chapter IV].

6.2. Some applications to homotopy of stratified spaces

In 1999 C. Eyral used stratified transversality to study the homotopy of
stratified spaces [8]. First he proved the following theorem in which the
stratified transversality is a necessary hypothesis (see [8] for a counterex-
ample):

Theorem 6.4. Let M be a C1 manifold of dimension n, Y a closed subset
of M equipped with a Whitney stratification Σ of dimension d and let N be
a submanifold of M transverse to each stratum of Σ.

Then the pair (N,N − (N ∩ Y )) is (n− 1− d)-connected.

and by which one deduces immediately the familiar results :

Corollary 6.1. Let M be a real analytic manifold of dimension n and Y a
closed real analytic subspace of M of dimension d. Then the pair (M,M−Y )
is (n− 1− d)-connected.

Corollary 6.2. Let M be a C1 manifold and N a closed submanifold of
M of codimension c. Then the pair (M,M −N) is (c− 1)-connected.

Then, for a compact and real analytic ambient manifold M , Eyral also
improves Theorem 6.4 by proving that it remains true when one considers
(instead of a submanifold N) a Whitney stratification Σ′ of a closed subset
X of M , transverse to Σ in M .

Theorem 6.5. Let M be a compact real analytic manifold of dimension
n, Y, X two closed real analytic subspaces of M equipped with two Whitney
stratifications Σ and Σ′ transverse in M . Then the pair (X, X − (X ∩ Y ))
is (n− 1− d)-connected (where d = dim Σ).
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Theorems 6.4 and 6.5 are useful in studying the global rectified homo-
topical depth (a notion introduced in 1997 by Eyral in his Ph.D. thesis by
reconsidering the Grothendieck rectified homotopical depth, see [9]) to prove
a theorem of Lefschetz type for quasi-projective singular varieties which
extends previous theorems of Goresky–MacPherson ([17, Theorem II.5.2]
and Hamm–Lê ([19 Theorem 2.1.4].

Eyral conjectures finally that Theorem 6.5 could also be true without
the hypotheses of compactness and analyticity on M ,X,Y .

7. More on Goresky’s stratified transversality.
Supertransversality

In chapter I of his thesis [14], M. Goresky gives the following definitions:

Definition 7.1. Let f : M → N be a C∞ map, and W1 ⊆ M and W2 ⊆
N two closed Whitney substratified objects. One says that f takes W1

transversally to W2 (on a closed subset K ⊆ N) if the stratified map f|W1 :
W1 → N is transverse to W2 (on K).

Of course if f∈Diff(M,M) this means that f(W1) is transverse to W2.

A map f : M → N is said to take W1 supertransversally to W2 if for
every pair of strata A ⊆ W1 and B ⊆ W2, f takes A transversally to B
and moreover for every p ∈ A ⊆ M and τ1 limit of tangent planes of A and
whenever q = f(p) ∈ B ⊆ N and τ2 is limit of tangent planes of B, then
f∗p(τ1) + τ2 = TqN .

Clearly if W1 = A and W2 = B are closed manifolds, f takes W1

supertransversally to W2 if and only if f takes W1 transversally to W2.

Moreover, if W1 = A and W2 = B are two closed Whitney objects, f
takes W1 supertransversally to W2 if and only if f takes W1 transversally
to W2. This follows by the (a)-regularity of W1 and W2 since if A ⊆ M and
B ⊆ N are strata of W1 and W2, and (with the above notations), p ∈ A,
q = f(p) ∈ B, by closedness there exist two strata A′ ≤ A and B′ ≤ B for
which p ∈ A′, q ∈ B′ and such that by hypothesis f∗p(TpA′)+TqB′ = TqN .
So by the (a)-regularity of A ≤ A′ and B ≤ B′, τ1 ⊇ TpA′ and τ2 ⊇ TqB′

and one finds the supertransversality f∗p(τ1) + τ2 = TqN [14, 1.3.1].

Goresky introduced this new notion of supertransversality with the
project to prove the following theorem [14, 1.2.2] :

Theorem 7.1. Suppose M,N are manifolds, K is a closed subset of N ,
W1 ⊆ M and W2 ⊆ N are closed Whitney stratified objects. Suppose
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f:M→N is a smooth map, which takes W1 transversally to W2 on K. Then:
i) There is a neighborhood U of f in C∞(M,N) so that if g ∈ U , then

g takes W1 transversally to W2 on K.
ii) For any neighborhood U ′ of f in C∞(M,N) there exists a map f ′∈U ′

which takes W1 transversally to W2 on N , and satisfies f ′|f−1(K) = f|f−1(K).
Furthermore f ′ may be chosen to be homotopic to f by a smooth homo-

topy which is constant on K.

The techniques used by Goresky in his thesis [14] to find a proof of The-
orem 7.1 can be resumed in some utilisations of the families of geodesics of
Mather [20] to construct isotopies sufficiently close to the identity (1.3.3 and
1.3.4), some lemmas (1.3.1, 1.3.2, 1.3.3) and discussions on supertransver-
sality and the proposition (1.3.4) below :

Proposition 7.1. Suppose f ∈ C∞(M,N), A a closed submanifold of M
and B a submanifold of N . Let K ⊆ N be a closed subset and U be a C1

neighbourhood of f in C∞(M,N). Suppose f takes A transversally to B on
K and let K ′ = f−1(K). Then there exists a g ∈ U such that g|K′ = f|K′

and g takes A transversally to B.

I consider important to present it because :
i) this was historically the original project of a stratified transversality

theorem by Goresky ;
ii) the fact that Theorem 7.1 above or (1.2.2) in [14] remained unpub-

lished since 1976, induced probably Goresky to find a new formulation of
it, in the completely revised version of 1981 [15].

Finally, Goresky ended Chapter I of his thesis [14], by deducing from
it corollary 7.1 below and by adding the following proposition (already an-
nounced in §6.1) essential to give geometrical meaning to the operation
involving the Whitney stratified cycles and cocycles of his geometric ho-
mology and cohomology theory :

Corollary 7.1. If W1 and W2 are closed Whitney stratified objects in a
manifold M which are transverse on a closed subset K ⊆ M , then there
exists a diffeomorphism φ : M → M arbitrarily close to 1M in the C1

topology, so that φ(W1) is transverse to W2 and φ|K = 1K .

Proposition 7.2. Suppose f : M → N is a smooth map between smooth
manifolds and suppose W1 ⊆ M and W2 ⊆ N are Whitney stratified objects.

Suppose f takes W1 transversally to W2, then W1∩f−1(W2) is a Whitney
stratified object.
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