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Introduction

The search for kinematic formulas is one of the main goal of
integral geometry. Such formulas have been proved in various
contexts by various authors, for instance:

- For convex bodies by Blaschke and Hadwiger;

- For manifolds by Chern and manifolds with boundary by
Santaló;

- For PL-sets by Cheeger, Müller and Schrader;

- For sets with positive reach by Federer;

- For subanalytic sets by Fu, and more generally for sets
definable in an o-minimal structure by Bernig, Bröcker and
Kuppe.
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The Lipschitz-Killing measures

Let X ⊂ Rn be a compact definable set equipped with a finite
definable Whitney stratification S = {Sa}a∈A.
Let f ∶ Rn → R be a C 2 definable function.

Definition

A point p ∈ X is a critical point of f∣X if it is a critical point of
f∣S(p), where S(p) is the stratum that contains p.

Definition

If p is an isolated critical point of f∣X ,

ind(f ,X ,p) = 1 − χ(X ∩ {f = f (p) − δ} ∩Bε(p)),

where 0 < δ ≪ ε≪ 1.
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Lemma

There exists a definable set Γ1(X ) ⊂ Sn−1, dimΓ1(X ) < n − 1, such
that for v ∉ Γ1(X ), the function v∗

∣X has a finite number of critical

points (v∗(y) = ⟨v , y⟩).

Definition (Gauss-Bonnet measure)

Let U ⊂ X be a Borel subset. We set

Λ0(X ,U) =
1

sn−1
∫
Sn−1
∑
x∈U

ind(v∗,X , x)dv ,

where ind(v∗,X , x) = 0 if x is not a critical point of v∗
∣X .
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Definition (Generalized Lipschitz-Killing measures)

Let U ⊂ X be a Borel subset. For k ∈ {0, . . . ,n − 1}, we set

Λn−k(X ,U) = c(n, k)∫
Ak
n

Λ0(X ∩ E ,X ∩ E ∩U)dE ,

where

1 Ak
n is the affine Grassmannian of affine spaces of dimension k

in Rn,

2 c(n, k) is a universal constant.
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Remark

1 For any Borel set U of X , we have

Λd+1(X ,U) = ⋯ = Λn(X ,U) = 0,

and Λd(X ,U) = Hd(U), where d is the dimension of X and
Hd is the d-th dimensional Hausdorff measure in Rn.

2 If X is smooth then for k ∈ {0, . . . ,d}, Λk(X ,U) is equal to

1

sn−k−1
∫
U
Kd−k(x)dx ,

where Kd−k denotes the (d − k)-th Lipschitz-Killing curvature.

3 We have Λ0(X ,X ) = χ(X ) (generalized Gauss-Bonnet
formula).
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The Lipschitz-Killing measures satisfies the following kinematic
formula:

Theorem (due to Fu, Bernig-Broecker-Kuppe)

Let X ⊂ Rn and Y ⊂ Rn be two compact definable sets and let
U ⊂ X and V ⊂ Y be two Borel sets. For k ∈ {0, . . . ,n}, the
following kinematic formula holds:

∫
SO(n)⋉Rn

Λk(X ∩ gY ,U ∩ gV )dγdx

= ∑
p+q=k+n

e(p,q,n)Λp(X ,U)Λq(Y ,V ),

where e(p,q,n) = sp+q−nsn
spsq

.
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For k = 0, the above formula is called the principal kinematic
formula.

Corollary (Principal kinematic formula)

Let X ⊂ Rn and Y ⊂ Rn be two compact definable sets. We have

∫
SO(n)⋉Rn

χ(X ∩ gY )dγdx = ∑
p+q=n

e(p,q,n)Λp(X ,X )Λq(Y ,Y ).

Goal : find a similar formula for germs of closed definable sets.
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Known formulas for germs

The polar invariants were defined by Comte and Merle. They are
real versions of the local vanishing Euler characteristics
(Brylinski-Dubson-Kashiwara, Lê-Teissier).

Definition

(not the original one) Let (X ,0) ⊂ (Rn,0) be a germ of closed
definable set. For k ∈ {0, . . . ,n}, we set

σk(X ,0) =
1

gn−k
n
∫
Gn−k
n

( 1

sn−1
∫
Sn−1

lim
ε→0

lim
δ→0+

χ (X ∩ (H + δv) ∩Bn
ε )dv)dH.

Remark

If d = dimX and d0 is the dimension of the stratum that contains
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Comte and Merle proved formulas relating the polar invariants to
the Lipschitz-Killing curvatures of X .

Theorem

For any germ (X ,0) ⊂ (Rn,0) of closed definable set, we have

⎛
⎜
⎝

Λloc
1 (X ,0)

⋮
Λloc
n (X ,0)

⎞
⎟
⎠
=
⎛
⎜⎜⎜
⎝

1 m2
1 . . . mn

1

0 1 . . . mn
2

⋮ ⋮ ⋱ ⋮
0 0 . . . 1

⎞
⎟⎟⎟
⎠
⋅
⎛
⎜
⎝

σ1(X ,0)
⋮

σn(X ,0)

⎞
⎟
⎠
,

where

Λloc
k (X ,0) = lim

ε→0

Λk(X ∩Bn
ε ,X ∩Bn

ε )
bkεk

, (Lipschitz-Killing invariants)

and mj
i =

bj
bj−ibi
(j
i
) − bj−1

bj−1−ibi
(j−1

i
), for i + 1 ≤ j ≤ n.
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Particular case. If dim X = d then the last non-trivial equality is
Λloc
d (X ,0) = σd(X ,0) (∗). But

Λloc
d (X ,0) = lim

ε→0

Hd(X ∩Bn
ε )

bdεd

is Θd(X ,0), the density of X at the origin. The equality (∗) is the
Cauchy-Crofton formula for the density, previously proved by
Comte (2000).
Then Comte and Merle proved the following real version of a result
due to Lê and Teissier for complex analytic sets (improved later by
Nguyen and Valette).

Theorem

Let X be a closed definable set of dimension d, equipped with a
Verdier stratification (X j). Let Y be a stratum. Then the
functions y ↦ σi(X , y) and y ↦ Λloc

i (X , y) are continuous on Y .
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Let us consider the following limits:

Λlim
k (X ,0) ∶= lim

ε→0

Λk(X ,X ∩Bn
ε )

bkεk
.

Note that Λloc
k (X ,0) /= Λlim

k (X ,0). If X = R2 then

Λloc
0 (X ,0) = 1, Λloc

1 (X ,0) =
π

2
and Λlim

0 (X ,0) = 0, Λlim
1 (X ,0) = 0.

Theorem (D., 2015)

Let (X ,0) ⊂ (Rn,0) be a germ closed definable set. For
k ∈ {0, . . . ,n − 1}, we have

Λlim
k (X ,0) = σk(X ,0) − σk+1(X ,0),

and
Λlim
n (X ,0) = σn(X ,0).
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Λloc
0 (X ,0) = 1, Λloc

1 (X ,0) =
π

2
and Λlim

0 (X ,0) = 0, Λlim
1 (X ,0) = 0.

Theorem (D., 2015)

Let (X ,0) ⊂ (Rn,0) be a germ closed definable set. For
k ∈ {0, . . . ,n − 1}, we have

Λlim
k (X ,0) = σk(X ,0) − σk+1(X ,0),

and
Λlim
n (X ,0) = σn(X ,0).
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The principal kinematic formula for germs

Question: can we replace the (n − k)-plane H with any germ of
closed definable set ?

Theorem (D., 2020)

Let (X ,0) ⊂ (Rn,0) and (Y ,0) ⊂ (Rn,0) be two germs of closed
definable sets. The following principal kinematic formula holds:

1

s2
n−1
∫
SO(n)×Sn−1

lim
ε→0

lim
δ→0+

χ (X ∩ (γY + δv) ∩Bn
ε )dγdv

=
n

∑
i=0

Λlim
i (X ,0) ⋅ σn−i(Y ,0).
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Let us specify this kinematic formula when d + e = n, d = dimX
and e = dimY . We denote by X d (resp. Y e) the union of the
top-dimensional strata of X (resp. Y ). The following corollary is a
generalization of the Cauchy-Crofton formula for the density due
to Comte.

Corollary

The following formula holds:

1

s2
n−1
∫
SO(n)×Sn−1

lim
ε→0

lim
δ→0+

# (X d ∩ (γY e + δv) ∩Bn
ε )dγdv

= Θd(X ) ⋅Θe(Y ).
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Proof in the conic case

First step: a spherical kinematic formula
Let X ⊂ Sn−1 be a compact definable set and let Y ⊂ Sn−1 be a
definable set.

Proposition

The following kinematic formula holds:

1

sn−1
∫
SO(n)

χc(X∩γY )dγ =
n−1

∑
i=0

Λ̃i(X ,X )
si

⋅ 1

g i+1
n
∫
G i+1
n

χc(Y∩H)dH,

where the Λ̃i ’s, i = 0, . . . ,n − 1, denote the spherical
Lipschitz-Killing measures.
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Idea of the proof. If Y is compact, then it is an application of the
generalized spherical Gauss-Bonnet formula and the generalized
spherical kinematic formula (due to Fu, Bernig-Broecker-Kuppe).

To get the result for any Y , we use the cell decomposition of a
definable set and the additivity of χc .
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Second step: a kinematic formula in the unit ball
Let X ⊂ Rn be a closed conic definable set. Let Y ⊂ Bn be another
definable set.

Proposition

The following kinematic formula holds:

1

sn−1
∫
SO(n)

χc(X∩γY )dγ =
n

∑
i=0

Λi(X ,X ∩Bn)
bi

⋅ 1

g i
n
∫
G i
n

χc(Y∩H)dH.
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Idea of the proof. Let us assume first that 0 ∉ Y and let φ be the
following definable mapping:

φ ∶ Bn ∖ {0} → Sn−1

x ↦ x
∣x ∣ .

Then the result follows from:

Hardt’s theorem applied to φ,

the previous spherical kinematic formula,

the equality: Λk(X ,X∩Bn)

bk
= Λ̃k−1(X∩Sn−1,X∩Sn−1)

sk−1
(D., 2012).
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If 0 ∈ Y , we denote by Y ∗ = Y ∖ {0}. We apply the previous case
to Y ∗ and we use the following equalities:

χc(X ∩ γY ) = χc(X ∩ γY ∗) + 1 and
χc(Y ∩H) = χc(Y ∗ ∩H) + 1,

1 −∑n
i=1

Λi(X ,X∩Bn)

bi
= Λ0(X ,X ∩Bn). (D., 2012).
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Third step: the kinematic formula for conic sets

Proposition

Let X ,Y ⊂ Rn be two closed conic definable sets. Then

1

s2
n−1
∫
SO(n)×Sn−1

lim
δ→0+

χ (X ∩ (γY + δv) ∩Bn)dγdv

=
n

∑
i=0

Λi(X ,X ∩Bn)
bi

⋅ σn−i(Y ,0).

Idea of the proof. Let us fix δ > 0. By the change of variable
u = γv , we have that for γ ∈ SO(n)

∫
Sn−1

χ (X ∩ (γY + δu) ∩Bn)du = ∫
Sn−1

χ (X ∩ γ(Y + δv) ∩Bn)dv .
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Applying the previous proposition to X ∩Bn and (Y + δv) ∩Bn, we
get that

1

s2
n−1
∫
SO(n)×Sn−1

χ (X ∩ γ(Y + δv) ∩Bn)dvdγ

=
n

∑
i=0

Λi(X ,X ∩Bn)
bi

⋅ 1

g i
n
∫
G i
n

1

sn−1
∫
Sn−1

χ ((Y + δv) ∩Bn ∩H)dvdH.

Passing to the limit as δ → 0+ and using Lebesgue’s theorem, we
obtain that
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We conclude with the following observation:

lim
δ→0+

χ ((Y + δv) ∩Bn ∩H) = lim
δ→0+

χ (Y ∩Bn ∩ (H − δv)) ,

and so

1

g i
n
∫
G i
n

1

sn−1
∫
Sn−1

lim
δ→0+

χ ((Y + δv) ∩Bn ∩H)dvdH = σn−i(Y ,0).
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The following kinematic formula is the corollary of the previous one
and the Gauss-Bonnet formula for the real Milnor fibre (D., 2015).

Theorem

Let (X ,0) ⊂ (Rn,0) and (Y ,0) ⊂ (Rn,0) be two germs of closed
definable sets. The following principal kinematic formula holds:

1

s2
n−1
∫
SO(n)×Sn−1

lim
ε→0

lim
δ→0+

Λ0 (X ∩ (γY + δv),X ∩ (γY + δv) ∩Bn
ε )dγdv

=
n

∑
i=0

Λlim
i (X ,0) ⋅ Λlim

n−i(Y ,0).
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Thanks for your attention !
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