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Introduction

Zariski asked in 1971, the following question:

The multiplicity of a reduced analytic hypersurface singularity in Cn

depends only on its embedded topological type?

One can also ask similar question for families:

If f : (Cn,0)→ (C,0) is a reduced germ of holomorphic function and ft
is a topologically V -constant deformation of it , then is it true that ft is
equimultiple?

ft topologically V -constant means that the family of hypersurfaces
V (ft ) = f−1

t (0) is topologically trivial.
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Introduction

I will tell you two short stories about the Zariski multiplicity conjecture
for families of hypersurfaces with non-isolated singularities.

Deformations with constant Lê numbers and multiplicity of
nonisolated hypersurface singularities, Christophe Eyral and
M.A.S.Ruas, 2015.

On the Zariski multiplicity conjecture for weighted homogeneous
and Newton nondegenerate line singularities, Christophe Eyral
and M.A.S.Ruas, 2019.

Whitney equisingularity of families of surfaces in C3, Otoniel
Nogueira da Silva and M.A.S.Ruas, 2019.

Equimultiplicity of families of map germs from C2 to C3, Otoniel
Nogueira da Silva, 2020.
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Introduction

Setting the problem

Let B ⊂ Cn and D ⊂ C be open balls around the origin,
z := (z1, . . . , zn) linear coordinates for Cn and

f : (B × D, {0} × D)→ (C,0), (z, t) 7→ ft (z) := f (z, t),

a holomorphic function.

ft is reduced, ∀t ∈ D

m0(ft ) : multiplicity of V (ft ) := f−1
t (0) at 0 ∈ Cn

m0(ft ) = ord(ft ) at 0, where ord(ft ) is the lowest degree in the
power series expansion of ft at 0.
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Introduction

ft is topologically V -constant (or V (ft ) is topologically trivial) if for
all sufficienty small t , there are neighbourhoods U0, Ut ⊂ B,
around the origin, and homeomorphism φt : (Ut ,0)→ (U0,0) such
that

φt (V (ft ) ∩ Ut ) = V (f0) ∩ U0

ft is equimultiple if m0(ft ) = m0(f0) for all t sufficiently small.

Conjecture 1: If the family ft is topologically V -constant, then it is
equimultiple.
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Isolated singularities

Hypersurfaces with isolated singularity

If V (ft ) is a family with isolated singularity at the origin, by
Lê-Ramanujam Theorem, provided that n 6= 3, it follows that Zariski
multiplicity conjecture is equivalent to the following conjecture by
Teissier:

Conjecture 2 (Teissier): If µ(ft ) is constant, then ft is equimultiple.
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Isolated singularities

Theorem A: (G-M. Greuel (1986); C. Plénat and D. Trotman (2013)

If f (z, t) = f0(z) + tg1(z) + t2g2(z) + . . .+ t r gr (z) + . . . is an analytic
one parameter family of isolated hypersurface singularities with
constant Milnor number at z = 0, and m0(f0) = m, then

m0(g1) ≥ m, m0(g2) ≥ m − 1, . . . , m0(gr ) ≥ m − r + 1.

Theorem B: (G-M. Greuel (1986); O’Shea (1987) )
Let f0 be a quasihomogeneous polynomial with isolated singularities
and ft a µ-constant deformation of f0. Then m0(ft ) = m0(f0).

Theorem C: (Plénat-Trotman(2013))

Let f (z, t) = f0(z) + tg(z) + t2h(z) be a µ-constant family. If the
singular set of the tangent cone of {f0 = 0} is not contained in the
tangent cone of {h = 0}, then the multiplicity m0(ft ) is constant.
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Isolated singularities

Theorem: (Lê-Saito, Teissier)

F : (Cn × C,0)→ (C,0), F0(z) = f (z), µ(Ft ) <∞. The following
statements are equivalent.
(1) F is a µ-constant deformation of f .
(2) For every holomorphic curve γ : (C,0)→ (Cn × C,0)

ord(
∂F
∂t
◦ γ) > inf{ord(

∂F
∂zi
◦ γ) | i = 1, . . . ,n},

(3) ∂F
∂t ∈ JF , ( JF = 〈 ∂F

∂z1
, . . . , ∂F

∂zn
〉 is the Jacobean ideal in On+1).

(4) The polar curve of F with respect to {t = 0} does not split i.e.

Γf = {(z, t) ∈ Cn × C | ∂F
∂zi

(z, t) = 0, i = 1 . . . ,n} = {0} × C near (0,0).
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Non-isolated singularities

Non-isolated singularities

Question: Do these results hold for families of non-isolated
singularities?

Σft : critical locus of ft , dim0Σft = d (constant as t varies.)

Γf :=
{

(z, t) | ∂f
∂zi

(z, t) = 0, i = 1, . . .n
}

Polar variety of f .

ft is λz-constant (or λ-constant with respect to the coordinates
z = (z1, . . . , zn) ) if for 0 ≤ i ≤ d and for all sufficiently small t , the
i − th Lê number of ft at 0 with respect to z, λi

z(ft )(0), is defined
and independent of t . When d = 0, λ0

z(ft )(0) = µ(ft ).
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Non-isolated singularities

For non-isolated singularities is not true in general that topological
V -constancy implies λz constant.

Example
(Fernández-Bobadilla,Gaffney (2008), Fernández-Bobadilla (2013) )
Let f ,gt : (C3,0)→ (C,0) defined by
f (x , y , z) = x15 + y10 + z6, gt (x , yz) = xy + tz,
and Ft := f 2 − g12

t = (f − g6
t )(f + g6

t ).

dim ΣFt = 1, ΣFt = V (f ,gt ).

Ft topologically R-trivial, λz(Ft ) not constant.

Maria Aparecida Soares Ruas On the multiplicities of families of non-isolated hypersurface singularitiesSeptember 29, 2021 10 / 32



Non-isolated singularities

For non-isolated singularities is not true in general that topological
V -constancy implies λz constant.

Example
(Fernández-Bobadilla,Gaffney (2008), Fernández-Bobadilla (2013) )
Let f ,gt : (C3,0)→ (C,0) defined by
f (x , y , z) = x15 + y10 + z6, gt (x , yz) = xy + tz,
and Ft := f 2 − g12

t = (f − g6
t )(f + g6

t ).

dim ΣFt = 1, ΣFt = V (f ,gt ).

Ft topologically R-trivial, λz(Ft ) not constant.

Maria Aparecida Soares Ruas On the multiplicities of families of non-isolated hypersurface singularitiesSeptember 29, 2021 10 / 32



Non-isolated singularities

For non-isolated singularities is not true in general that topological
V -constancy implies λz constant.

Example
(Fernández-Bobadilla,Gaffney (2008), Fernández-Bobadilla (2013) )
Let f ,gt : (C3,0)→ (C,0) defined by
f (x , y , z) = x15 + y10 + z6, gt (x , yz) = xy + tz,
and Ft := f 2 − g12

t = (f − g6
t )(f + g6

t ).

dim ΣFt = 1, ΣFt = V (f ,gt ).

Ft topologically R-trivial, λz(Ft ) not constant.
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λz constant and af -condition

λz constant =⇒ af -condition

Theorem (Massey, Theorem 6.5, LNM 1615)

If the family ft is λz-constant, then {0} × D satisfies Thom’s af

condition at the origin with respect to the ambient stratum, that is, if pk

is a sequence of points in (B × D) \ Σf , such that pk −→ (0,0) and
Tpk Vf−f (pk ) −→ T , then 0× D ⊂ T .

Lemma (Eyral and R. (2015)) - Thom’s inequalities

If {0} × D satisfies Thom’s af condition at the origin with respect to the
ambient stratum, then, for any holomorphic curve
γ : (C,0)→ (Cn × C,0), not contained in Γf , we have

ord(
∂f
∂t
◦ γ) > inf{ord(

∂f
∂zi
◦ γ) | i = 1, . . . ,n}.
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λz constant and af -condition

First Problem

Theorem Ani : Eyral and R. (2015)

If the family f (z, t) = f0(z) + tg1(z) + t2g2(z) + . . .+ t r gr (z) + . . . is
λz− constant at z = 0, and m0(f ) = m, then

m0(g1) ≥ m, m0(g2) ≥ m − 1, . . . , m0(gr ) ≥ m − r + 1.

Theorem Cni : (Eyral and R.(2015))

Let f (z, t) = f0(z) + tg1(z) + t2g2(z) be a λz-constant family. If the
singular set of the tangent cone of {f0 = 0} is not contained in the
tangent cone of {g2 = 0}, then the multiplicity m0(ft ) is constant.
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λz constant and af -condition

• First proof of Theorem Ani :

Consider the partial derivatives:

∂f
∂t

=
∑
j≥1

jgj(z)t j−1,
∂f
∂zi

=
∂f0
∂zi

+
∑
j≥1

∂gj

∂zi
t j

Choose i0 such that ∂f
∂zi0
6= 0. Pick a point

(z0, t0) ∈ (B \ {0})× (D \ {0}) such that for all s small,

in(
∂f
∂t

(sz0, st0)) 6= 0 and in(
∂f
∂zi0

(sz0, st0)) 6= 0

Write γ(s) = (γ1(s), γ2(s)) = (sz0, st0). Then,
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λz constant and af -condition

We have

ord(
∂f
∂t
◦ γ) = ord(

∂f
∂t

) = inf(m0(gj) + j − 1)

While:

inf iord(
∂f
∂zi
◦ γ) ≥ inf i,j{m0(f0)− 1, m0(gj) + j − 1}

As in( ∂f
∂zi0
◦ γ) 6= 0, the set γ(C) is not contained in Γf , and it follows

that m − 1 < j + m0(gj)− 1 for every j ≥ 1.
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λz constant and af -condition

• Second proof of Theorem Ani :

Unlike in the first proof, here we do have to assume that ft is λz

constant in order to apply Massey-Iomdine-Lê formula (it is not
sufficient to assume that ft satisfies af condition.)

As λz is constant, for all sufficiently high integers
0� N1 � N2 � . . .� Nd , d = dim Σft , the functions

f0 + z1
N1 + z2

N2 + . . .+ zd
Nd and ft + z1

N1 + z2
N2 + . . .+ zd

Nd

have isolated singularities and the same Milnor number. We now apply
Theorem A and use the fact that Ni are sufficiently bigh.

Corollary
If ft (z) = f0(z) + tg(z) is a λz-constant family, then it is equimultiple.

• Parusinski (1999), Plénat-Trotman (2013), Eyral-Ruas (2016)
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λz constant and af -condition

The proofs of Theorem Cni

• (Skecht of the first proof of Theorem Cni :)

Lemma

Suppose that f (z, t) = f0(z) + tg1(z) + t2g2(z), with g2 6= 0 and
Σin(f0) * C(V (g2)) then Σin(f0)× C * Γf .

Observe that dim Σin(f0) ≥ 1 and by Theorem Ani , m0(g1) ≥ m and
m0(g2) ≥ m − 1.

Suppose (by contradiction) that m0(g2) = m − 1.
By the previous lemma, there exists an index i0 such that the restriction
of ∂f

∂zi0
to Σin(f0)× C is 6= 0.
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λz constant and af -condition

So we can pick a point (z0, t0) 6= (0,0) in Σin(f0) such that for all s 6= 0
sufficiently small,

in
∂f
∂t

(sz0, st0) 6= 0, ing2(sz0, st0) 6= 0,
∂f
∂zi0

(sz0, st0) 6= 0

Let γ(s) = (sz0, st0), then we can check that the af condition fails
along γ.
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Second problem

Second problem

In this second part, I discuss the extension of Theorem B (Greuel,
1986), (O’Shea, 1987) to the non-isolated case.
• C. Eyral, M.A.S.Ruas, 2019.

Theorem
Suppose that ft is a family of line singularities such that f0 is weighted
homogeneous with respect to a system of positive integer weights
(w1, . . . ,wn) satisfying the following conditions:

(i) w1 = min{w1, . . . ,wn}

(ii) w1 divides the weighted degree of f0

Also assume that for any t 6= 0 the polar curve Γ1
ft ,z

is irreducible.
Under these assumptions, if furthermore the families ft and fV (z1) are
both topologically equisingular, then they are both equimultiple.
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Second problem

Surfaces in C3 with smooth normalisation

X = Φ−1(0) ⊂ (C3 × C,0),

family of reduced hypersurfaces in C3, defined by
Φ : (C3 × C,0)→ (C,0).

Xt = φ−1
t (0), Xt ⊂ C3.

Suppose that X has a smooth normalisation.

Question: If X is topologically equisingular, does it follow that m0(Xt ) is
constant ?
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Second problem

For a family of surfaces X ⊂ (C3 × C,0) whose normalisation is
smooth, we can associate a family of parametrizations
ft : (C2,0)→ (C3,0) whose images are Xt . More precisely,

X = F (C2×C), F : (C2×C,0)→ (C3×C,0), F (x , y , t) = (ft (x , y), t).

We consider 1-parameter unfoldings F of A-finitely determined
map-germs f : (C2,0)→ (C3,0).
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Second problem

(Mather-Gaffney geometric criterion) f : (C2,0)→ (C3,0) is A−finitely
determined if and only if for all representative of f , there exists a
neighborhood U of 0 in C2 such that

the singularities of f (U) \ {0} are just transversal double points.
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Second problem

Example: f (x , y) = (x , y2, xy3 − x3y), the singularity C3 of Mond’s list

The double point curve is denoted by D(f ).
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Second problem

Double point set

D(f ) :=
{

(x , y) ∈ U : f−1(f (x , y)) 6= {(x , y)} ∪ Σ(f )
}

•We can give an analytic structure for D(f ) such that:

Theorem - Marar and Mond (1989); Marar, Nuño-Ballesteros and
Peñafort-Sanchis (2012)

Let f : (C2,0)→ (C3,0) be a finite and generically 1-to-1 map germ.
Then

f is finitely determined⇔ D(f ) is reduced.

Since D(f ) is reduced, we can consider its Milnor number, µ(D(f )).

Definition:
F is a µ-constant unfolding if µ(D(ft )) is independent of t .
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Second problem

Topological triviality

We say F is a A-topologically trivial if there are germs of
homeomorphisms H and K such that

(C2 × C,0)

�

F // (C3 × C,0)

K
��

(C2 × C,0)

H

OO

f×Id // (C3 × C,0)

where H and K are unfoldings of the identity.
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Second problem

Whitney equisingularity

Gaffney (Top. 1993)

Let F be a 1-parameter unfolding of a A-finite map-germ
f : (C2,0)→ (C3,0). If F is µ-constant, then F is excellent.

An excellent unfolding has a natural stratification whose strata in the
complement of the parameter space T are the stable types in source
and target.

The strata in the source are the following:

{C2 × C \ D(F ), D(F ) \ T , T}

In the target, the strata are

{C3 × C \ F (C2 × C), F (C2 × C) \ F (D(F )), F (D(F )) \ T , T}.

Notice that F preserves the stratification, that is, F sends a stratum
into a stratum.Maria Aparecida Soares Ruas On the multiplicities of families of non-isolated hypersurface singularitiesSeptember 29, 2021 25 / 32
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Second problem

Definition
An unfolding F as above is Whitney equisingular if the above
stratifications in source and target are Whitney equisingular along T .

R. - (1994)

(a) F is µ- constant

(b) F is topologically trivial

(c) F is Whitney equisingular.

Question: Does it follow that (a)⇐⇒ (b)⇐⇒ (c) ? Answer: No.
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Second problem

Topological triviality: Callejas-Bedregal, Houston and R. (2006), Fernández de
Bobadilla and Pe Pereira (2008)

F is topologically trivial⇔ µ(D(ft )) is constant.

Whitney equisingularity: Gaffney (1993); Marar, Nuño-Ballesteros and
Peñafort-Sanchis (2012)

Theorem: (Marar et al. (2012)) F is Whitney equisingular⇐⇒
µ(D(ft )), and µ1(ft (C2,0)) are independent of t .

µ1(f (C2)) := µ(Y0),

where Y0 := f (C2) ∩ H, and H is a generic plane in C3, passing
through the origin.
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Second problem

In 1994, there were few known classes of examples to test the
problem.

• Marar and Nuño-Ballesteros. A note on finite determinacy for corank
2 map germs from surfaces to 3-space, Math. Proc. Cambr. Phil. Soc.,
(2008).

• Marar, Nuño-Ballesteros and Peñafort-Sanchis. Double point curves
for corank 2 map germs from C2 to C3. Topology Appl., (2012).

• Marar and Nuño-Ballesteros. Slicing corank 1 map germs from C2 to
C3. Quart. J. Math., (2014).

• Peñafort-Sanchis. Reflection Maps, Mathematische Annalen, (2020).

Among others...
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Second problem

O. N. Silva (Thesis), O. N. Silva and R. (2019)

Example

f : (C2,0)→ (C3,0), f (x , y) = (x2, x2y + xy2 + y3, x5 + y5), and

ft (x , y) = (x2 + txy , x2y + xy2 + y3, x5 + y5)

µ(D(ft )) = 441 for all t , then F is topologically trivial.

H = V (aX + bY + cZ ) generic hyperplane,
(Yt ,0) = V (a(x2 + txy) + b(x2y + xy2 + y3) + c(x5 + y5))

µ(Y0,0) = 2 and µ(Yt ,0) = 1 for t 6= 0, so µ1(ft (C2)) not constant.

m0(ft (D(ft ))) = 22 and m0(ft (C2)) = 6 for all t .

Hence F is not Whitney equisingular.
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Second problem

Ft µ m0

(Corank 1 case) (Ỹ0, 0) (Ỹt , 0) f (D(f )) ft(D(ft))

(x , y4, x5y + xy5 + y6 + ty7) 0 0 9 8

(x , y6, x13y + xy13 + y14 + ty15) 0 0 35 33

(Corank 2 case)

(x2 + txy , x2y + xy2 + y3, x5 + y5) 2 1 22 22

(x3, y5, x2 − xy + y2 + tx2) 1 1 23 22
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Second problem

Theorem: (O. N. Silva and M.A.S.R. (2019), O. N. Silva (2020))

• Let f : (C2,0)→ (C3,0) be a finitely determined map germ.

• f is quasihomogeneous and has corank 1.

•Write f in the form f (x , y) = (x ,p(x , y),q(x , y)), set d2 = deg(p) ,
d3 = deg(q) and suppose one of the following conditions:

(1) the weights of the variables are w(x) = 1 and w(y) = b ≥ 2.

(2) the weights of the variables are w(x) = w(y) = 1 with
gcd(d2,d3) 6= 2.

• Let F = (ft , t) be an unfolding of f . Then

F is topologically trivial⇔ F is Whitney equisingular⇔ µ(D(ft )) is
constant.
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Second problem

Congratulations, David!!
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