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Introduction

Zariski asked in 1971, the following question:
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Introduction

Zariski asked in 1971, the following question:

The multiplicity of a reduced analytic hypersurface singularity in C”
depends only on its embedded topological type?

One can also ask similar question for families:

If f: (C",0) — (C,0) is a reduced germ of holomorphic function and f;
is a topologically V-constant deformation of it , then is it true that f; is
equimultiple?
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Introduction

Zariski asked in 1971, the following question:

The multiplicity of a reduced analytic hypersurface singularity in C”
depends only on its embedded topological type?

One can also ask similar question for families:

If f: (C",0) — (C,0) is a reduced germ of holomorphic function and f;
is a topologically V-constant deformation of it , then is it true that f; is
equimultiple?

f; topologically V-constant means that the family of hypersurfaces
V(%) = £,(0) is topologically trivial.

&
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Introduction

| will tell you two short stories about the Zariski multiplicity conjecture
for families of hypersurfaces with non-isolated singularities.
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@ Deformations with constant Lé numbers and multiplicity of
nonisolated hypersurface singularities, Christophe Eyral and
M.A.S.Ruas, 2015.

B Y Yy TSN O the multiplicities of families of non-isol: September 29,2021  3/32



Introduction

| will tell you two short stories about the Zariski multiplicity conjecture
for families of hypersurfaces with non-isolated singularities.

@ Deformations with constant Lé numbers and multiplicity of
nonisolated hypersurface singularities, Christophe Eyral and
M.A.S.Ruas, 2015.

@ On the Zariski multiplicity conjecture for weighted homogeneous
and Newton nondegenerate line singularities, Christophe Eyral
and M.A.S.Ruas, 2019.

B Y Y- TSN O the multiplicities of families of non-isol: September 29,2021  3/32



Introduction

| will tell you two short stories about the Zariski multiplicity conjecture
for families of hypersurfaces with non-isolated singularities.
@ Deformations with constant Lé numbers and multiplicity of
nonisolated hypersurface singularities, Christophe Eyral and
M.A.S.Ruas, 2015.

@ On the Zariski multiplicity conjecture for weighted homogeneous
and Newton nondegenerate line singularities, Christophe Eyral
and M.A.S.Ruas, 2019.

@ Whitney equisingularity of families of surfaces in C3, Otoniel
Nogueira da Silva and M.A.S.Ruas, 2019.

B Y Y- TSN O the multiplicities of families of non-isol: September 29,2021  3/32



Introduction

| will tell you two short stories about the Zariski multiplicity conjecture
for families of hypersurfaces with non-isolated singularities.

@ Deformations with constant Lé numbers and multiplicity of
nonisolated hypersurface singularities, Christophe Eyral and
M.A.S.Ruas, 2015.

@ On the Zariski multiplicity conjecture for weighted homogeneous
and Newton nondegenerate line singularities, Christophe Eyral
and M.A.S.Ruas, 2019.

@ Whitney equisingularity of families of surfaces in C3, Otoniel
Nogueira da Silva and M.A.S.Ruas, 2019.

e Equimultiplicity of families of map germs from C? to C3, Otoniel
Nogueira da Silva, 2020. ?@S
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Introduction

Setting the problem

Let Bc C"and D c C be open balls around the origin,
z:=(zy,...,2p) linear coordinates for C" and

f:(BxD,{0} x D) — (C,0), (z,t) v fi(2) := f(z, 1),

a holomorphic function.
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Introduction

Setting the problem

Let Bc C"and D c C be open balls around the origin,
z:=(zy,...,2p) linear coordinates for C" and
f:(Bx D,{0} x D) — (C,0), (z,t) — fi(z) :== f(z,1),
a holomorphic function.
@ fiisreduced, vVt € D
@ mo(f;) : multiplicity of V(f) := f,7'(0) at 0 € C”
@ mo(f;) = ord(f;) at 0, where ord(f;) is the lowest degree in the

power series expansion of f; at 0. g@%
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Introduction

@ f; is topologically V-constant (or V(f;) is topologically trivial) if for
all sufficienty small ¢, there are neighbourhoods Uy, U; C B,
around the origin, and homeomorphism ¢; : (U, 0) — (Up, 0) such
that

oi(V(£) N Uy) = V() N Up
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Isolated singularities

Hypersurfaces with isolated singularity

If V(#)isa , by
Lé-Ramanujam Theorem, provided that n # 3, it follows that Zariski
multiplicity conjecture is equivalent to the following conjecture by
Teissier:
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Hypersurfaces with isolated singularity

If V(f;) is a family with isolated singularity at the origin, by
Lé-Ramanujam Theorem, provided that n # 3, it follows that Zariski
multiplicity conjecture is equivalent to the following conjecture by
Teissier:

Conjecture 2 (Teissier): If u(f;) is constant, then f; is equimultiple.
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Theorem A: (G-M. Greuel (1986); C. Plénat and D. Trotman (2013)

If f(z, t) = fo(2) + tg1(2) + 2ga(2) + ... + t'gr(2) + ... is an analytic
one parameter family of isolated hypersurface singularities with
constant Milnor number at z = 0, and my(fy) = m, then

mo(g1) > m, mo(g2) > m—1, ..., me(gr) >m—r+1.

On the multiplicities of families of non-isol: September 29, 2021 7/32




Theorem A: (G-M. Greuel (1986); C. Plénat and D. Trotman (2013)

If f(z, t) = fo(2) + tg1(2) + 2ga(2) + ... + t'gr(2) + ... is an analytic
one parameter family of isolated hypersurface singularities with
constant Milnor number at z = 0, and my(fy) = m, then

mo(g1) > m, mo(ge) > m—1, ..., mg(gr) > m—r+1.

Theorem B: (G-M. Greuel (1986); O’Shea (1987) )
Let fp be a quasihomogeneous polynomial with isolated singularities
and f; a y-constant deformation of f. Then my(f;) = my(fy).
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Theorem A: (G-M. Greuel (1986); C. Plénat and D. Trotman (2013)

If f(z, t) = fo(2) + tg1(2) + 2ga(2) + ... + t'gr(2) + ... is an analytic
one parameter family of isolated hypersurface singularities with
constant Milnor number at z = 0, and my(fy) = m, then

mo(g1) > m, mo(ge) > m—1, ..., mg(gr) > m—r+1.

Theorem B: (G-M. Greuel (1986); O’Shea (1987) )
Let fp be a quasihomogeneous polynomial with isolated singularities
and f; a y-constant deformation of f. Then my(f;) = my(fy).

Theorem C: (Plénat-Trotman(2013))

Let f(z,t) = fo(2) + tg(2) + t2h(z) be a p-constant family. If the
singular set of the tangent cone of {fy = 0} is not contained in the
tangent cone of {h = 0}, then the multiplicity my(f;) is constant.
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Isolated singularities

Theorem: (Lé-Saito, Teissier)

F:(C"xC,0) — (C,0), Fo(z) = f(2), u(Ft) < oo. The following
statements are equivalent.

(1) F is a u-constant deformation of f.
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Theorem: (Lé-Saito, Teissier)

F:(C"xC,0) — (C,0), Fo(z) = f(2), u(Ft) < oo. The following
statements are equivalent.

(1) F is a u-constant deformation of f.

(2) For every holomorphic curve v : (C,0) — (C" x C,0)

oF . oF .
ord(ﬁ oy) > mf{ord(a—zi oy)|i=1,...,n},
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Isolated singularities

Theorem: (Lé-Saito, Teissier)

F:(C"xC,0) — (C,0), Fo(z) = f(2), u(Ft) < oo. The following
statements are equivalent.

(1) F is a u-constant deformation of f.

(2) For every holomorphic curve v : (C,0) — (C" x C,0)

oF . oF .
ord(ﬁ oy) > mf{ord(a—zi oy)|i=1,...,n},

(3) 2k € Tk, (Jr = (%, ..., $£) is the Jacobean ideal in Op.1).

Maria Aparecida Soares Ruas On the multiplicities of families of non-isol: September 29, 2021 8/32



Isolated singularities

Theorem: (Lé-Saito, Teissier)

F:(C"xC,0) — (C,0), Fo(z) = f(2), u(Ft) < oo. The following
statements are equivalent.

(1) F is a u-constant deformation of f.

(2) For every holomorphic curve v : (C,0) — (C" x C,0)

oF . oF .
ord(ﬁ oy) > mf{ord(a—zi oy)|i=1,...,n},

() 97 € Tr. (Jr = ($5+- -, &) is the Jacobean ideal in Oy 1).
(4) The polar curve of F with respect to {t = 0} does not split i.e.

F
Ff:{(z,t)e@”x@|%(z,t):0,i:1...,n}:{O}x(Cnear(0,0).
1
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Non-isolated singularities

Non-isolated singularities

Question: Do these results hold for families of non-isolated
singularities?

B Y Yy TSN O the multiplicities of families of non-isol: September 29,2021  9/32



Non-isolated singularities

Non-isolated singularities

Question: Do these results hold for families of non-isolated
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@ XY f; : critical locus of f;, dimyXf; = d (constant as t varies.)
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Non-isolated singularities

Question: Do these results hold for families of non-isolated
singularities?

@ XY f; : critical locus of f;, dimyXf; = d (constant as t varies.)

o= {(z t)] (z t)=0,i= 1,...n} Polar variety of f.
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Non-isolated singularities

Non-isolated singularities

@ XY f; : critical locus of f;, dimyXf; = d (constant as t varies.)
o= {(z t)\ (z 1)=0,i= 1,...n} Polar variety of f.

@ f;is Az-constant (or A-constant with respect to the coordinates
z=(z,...,2p) ) iffor 0 < i < d and for all sufficiently small {, the
i — th L& number of f; at 0 with respect to z, \,(,)(0), is defined

and independent of ¢.
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Non-isolated singularities

@ For is not true in general that topological
V-constancy implies A, constant.
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Non-isolated singularities

@ For is not true in general that topological
V-constancy implies A, constant.

Example

(Fernandez-Bobadilla,Gaffney (2008), Fernandez-Bobadilla (2013) )
Let f, g; : (C3,0) — (C,0) defined by

f(x,y,2) = x5+ y10+ 28, gi(x,yz) = xy + tz,

and Fr .= 12 — g2 = (f — g?)(f + gf).
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Non-isolated singularities

@ For is not true in general that topological
V-constancy implies A, constant.

Example

(Fernandez-Bobadilla,Gaffney (2008), Fernandez-Bobadilla (2013) )
Let f, g; : (C3,0) — (C,0) defined by

f(x,y,z) =x"° + y10 4+ 28 gi(x,yz) = xy + tz,

and Fr .= 12 — g2 = (f — g?)(f + gf).

dmXF =1, TF = V(f,g).
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Non-isolated singularities

@ For is not true in general that topological
V-constancy implies A, constant.

Example

(Fernandez-Bobadilla,Gaffney (2008), Fernandez-Bobadilla (2013) )
Let f, g : (C3,0) — (C,0) defined by

f(x,y,2) = x"®+ y"0 + 28 gi(x,yz) = xy + tz,

and F;:= 12 — g{2 = (f — gf)(f + gf).

dmXF =1, ¥F = V(f, ).

F: topologically R-trivial, A\;(F;) not constant.
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Az constant and as-condition

A, constant — a;-condition
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Az constant and as-condition

A, constant — a;-condition

Theorem (Massey, Theorem 6.5, LNM 1615)

If the family f; is \;-constant, then {0} x D satisfies Thom’s a¢
condition at the origin with respect to the ambient stratum, that is, if py
is a sequence of points in (B x D) \ £f, such that p, — (0,0) and
To Vi—f(p) — T,then0 x D C T.
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Az constant and as-condition

A, constant — a;-condition

Theorem (Massey, Theorem 6.5, LNM 1615)

If the family f; is \;-constant, then {0} x D satisfies Thom’s a¢
condition at the origin with respect to the ambient stratum, that is, if py
is a sequence of points in (B x D) \ £f, such that p, — (0,0) and
To Vi—f(p) — T,then0 x D C T.

Lemma (Eyral and R. (2015)) - Thom’s inequalities

If {0} x D satisfies Thom’s a; condition at the origin with respect to the
ambient stratum, then, for any holomorphic curve

~v:(C,0) — (C" x C,0), not contained in I', we have

ord(g: o7y) > inf{ord(ngi om)i=1,...,n}
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Az constant and as-condition

First Problem

Theorem A,;: Eyral and R. (2015)

If the family f(z, t) = fo(2) + tg1(2) + t2ga(2) + ... + t'gr(2) + ... is
Az— constant at z = 0, and my(f) = m, then

mo(g1) = m, mo(g2) >m—1, ..., mo(gr) >m—r+1.
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Az constant and as-condition

First Problem

Theorem A,;: Eyral and R. (2015)

If the family f(z, t) = fo(2) + tg1(2) + t2ga(2) + ... + t'gr(2) + ... is
Az— constant at z = 0, and my(f) = m, then

mo(g1) = m, mo(g2) >m—1, ..., mo(gr) >m—r+1.

Theorem C,;: (Eyral and R.(2015))

Let f(z,t) = fo(2) + t91(2) + t2g=(2) be a A\ -constant family. If the
singular set of the tangent cone of {fy = 0} is not contained in the
tangent cone of {g» = 0}, then the multiplicity my(f;) is constant.

'
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Az constant and as-condition

e First proof of Theorem A,; :
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Az constant and as-condition

Consider the partial derivatives:

ofy 9gj ,i
!>Z1jgj 7 872/ 0z Zazlt
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Az constant and as-condition

Consider the partial derivatives:

oy~ 0g
j;jg’ ’ 7, 9z Z@z,t

Choose iy such that 7& 0.
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Az constant and as-condition

Consider the partial derivatives:
ofy 9g) ,;
ng’ ’ 7, 9z Z@z,t
j>1

Choose iy such that 7& 0. Pick a point
(20, 1) € (B\ {0}) x (D\ {0}) such that for all s small,
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Az constant and as-condition

Consider the partial derivatives:
ofy 99; ,;
ng’ ’ 7, 9z Z 8z,t
j>1
Choose iy such that 7& 0. Pick a point
(20, 1) € (B\ {0}) x (D\ {0}) such that for all s small,

in( 2 (s20,510)) 0
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Az constant and as-condition

Consider the partial derivatives:
ofy 9g) ,;
ng’ ’ 7, 9z Z@z,t
j>1

Choose iy such that 7& 0. Pick a point
(20, 1) € (B\ {0}) x (D\ {0}) such that for all s small,

of . Of
in(5;(s20. sto)) # 0 and '”(azio (820, stp)) # O
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Az constant and as-condition

Consider the partial derivatives:

ofy 99; ,;
ng’ ’ 7, 9z Z 8z,t
j>1
Choose iy such that 7& 0. Pick a point
(20, 1) € (B\ {0}) x (D\ {0}) such that for all s small,

f $29, Sty)) # 0 and in( of

0
(81‘( 82,-0(320’St0)) #0

Write 7(s) = (71(8),72(8)) = (s20, Sto). |
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Az constant and as-condition

Consider the partial derivatives:
ofy 9g) ,;
ng’ ’ 7, 9z Z@z,t
j>1

Choose iy such that 7& 0. Pick a point
(20, 1) € (B\ {0}) x (D\ {0}) such that for all s small,

f $29, Sty)) # 0 and in( of

0
(81‘( 82,-0(320’St0)) #0

Write y(s) = (71(8),72(8)) = (820, Stp). Then, |
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Az constant and as-condition

We have

of of , .
ord(a o) = ord(a) = inf(mo(g;) +j— 1)

While:

. of . .
/nf,-ord(g o) = inf; {mo(fo) — 1, mo(g;) +/— 1}
I
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Az constant and as-condition

We have

ord(a—f oy) = ord(af

= o) = inf(mo(g)) +— 1)

While:
. of . .
/nf,-ord(g o) = inf; {mo(fo) — 1, mo(g;) +/— 1}
I

As |n( o) # 0, the set (C) is not contained in 'y, and it follows
that m—1 <j+mg(g;)) —1 foreveryj>1.
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Az constant and as-condition

Unlike in the first proof, here we do have to assume that f; is A\,
constant in order to apply Massey-lomdine-Lé formula

aw
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Az constant and as-condition

Unlike in the first proof, here we do have to assume that f; is A\,
constant in order to apply Massey-lomdine-Lé formula (it is not
sufficient to assume that f; satisfies a; condition.)

As ) is constant, for all sufficiently high integers

0< Ny <o ... < Ny, d=dimX;, the functions
fy+z1M 4+ 2M 4 zgNand £+ z N+ 2N L zgNe

have isolated singularities and the same Milnor number.
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Unlike in the first proof, here we do have to assume that f; is A\,
constant in order to apply Massey-lomdine-Lé formula (it is not
sufficient to assume that f; satisfies a; condition.)

As ) is constant, for all sufficiently high integers
0< Ny <o ... < Ny, d=dimX;, the functions

fy+z1M 4+ 2M 4 zgNand £+ z N+ 2N L zgNe

have isolated singularities and the same Milnor number. We now apply
Theorem A and use the fact that N; are sufficiently bigh.

Corollary
Iffi(z) = fo(z2) + tg(z) is a A,-constant family, then it is equimultiple.
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As ) is constant, for all sufficiently high integers
0< Ny <o ... < Ny, d=dimX;, the functions

fy+z1M 4+ 2M 4 zgNand £+ z N+ 2N L zgNe

have isolated singularities and the same Milnor number. We now apply
Theorem A and use the fact that N; are sufficiently bigh.

Corollary
Iffi(z) = fo(z2) + tg(z) is a A,-constant family, then it is equimultiple.

L , Qv
e Parusinski (1999), Plénat-Trotman (2013), Eyral-Ruas (2016) —
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Az constant and as-condition

The proofs of Theorem C;

e (Skecht of the first proof of Theorem C,; :)
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Az constant and as-condition

The proofs of Theorem C;

Lemma
Suppose that f(z,t) = fy(2) + tg1(2) + t?go(2), with g» # 0 and
Yin(fy) ¢ C(V(92)) then Zin(fy) x C & Iy.
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Az constant and as-condition

The proofs of Theorem C;

Lemma
Suppose that f(z,t) = fy(2) + tg1(2) + t?go(2), with g» # 0 and
Yin(fy) ¢ C(V(92)) then Zin(fy) x C & Iy.

Observe that dim Xin(fy) > 1 and by Theorem A,;, mg(g1) > mand
mo(g2) > m—1.
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Az constant and as-condition

The proofs of Theorem C;

Lemma
Suppose that f(z,t) = fy(2) + tg1(2) + t?go(2), with g» # 0 and
Yin(fy) ¢ C(V(92)) then Zin(fy) x C & Iy.

Observe that dim Xin(fy) > 1 and by Theorem A,;, mg(g1) > mand
mo(g2) > m—1.

Suppose (by contradiction) that my(gz) = m — 1.
By the previous lemma, there exists an index iy such that the restriction

of 2L to Yin(fy) x Cis # 0. _
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Az constant and as-condition

So we can pick a point (zg, &) # (0,0) in Xin(fy) such that for all s # 0
sufficiently small,

f f
in%(szo, sty) #0, ings(s2p, sty) # 0, ;7(320, sty) # 0

o
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Az constant and as-condition

So we can pick a point (zg, &) # (0,0) in Xin(fy) such that for all s # 0
sufficiently small,

f f
in%(szo, sty) #0, ings(s2p, sty) # 0, ;7(520, sty) # 0

o

Let v(s) = (s2o, sy), then we can check that the a; condition fails
along ~.
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Second problem

Second problem

In this second part, | discuss the extension of Theorem B (Greuel,
1986), (O’Shea, 1987) to the non-isolated case.
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Second problem

Second problem

In this second part, | discuss the extension of Theorem B (Greuel,
1986), (O’Shea, 1987) to the non-isolated case.
e C. Eyral, M.A.S.Ruas, 2019.

Theorem
Suppose that f; is a family of such that fy is
with respect to a system of positive integer weights
(wy,..., wp) satisfying the following conditions:
@ (i) wy = min{wy,..., wWp}

@ (ii) wy divides the weighted degree of f,
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Second problem

Second problem

In this second part, | discuss the extension of Theorem B (Greuel,
1986), (O’Shea, 1987) to the non-isolated case.
e C. Eyral, M.A.S.Ruas, 2019.
Theorem
Suppose that f; is a family of such that fy is

with respect to a system of positive integer weights
(wy,..., wp) satisfying the following conditions:

@ (i) wy = min{wy,..., wWp}
@ (ii) wy divides the weighted degree of f,

Also assume that for any t # 0 the polar curve F}I , Is irreducible.
Under these assumptions, if furthermore the families f and fy .,y are
both topologically equisingular, then they are both equimultiple.
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Second problem

Surfaces in C° with smooth normalisation

X =o71(0) c (C3 x C,0),

family of reduced hypersurfaces in C3, defined by
¢ (C®xC,0)— (C,0).
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X =o71(0) c (C3 x C,0),

family of reduced hypersurfaces in C3, defined by
¢ (C®xC,0)— (C,0).

X; = ¢;1(0), X;c C®.
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Second problem

Surfaces in C° with smooth normalisation

X =o71(0) c (C® x C,0),

family of reduced hypersurfaces in C3, defined by
®: (C3 x C,0) — (C,0).

X; = ¢;1(0), X;c C®.

Suppose that X has a smooth normalisation.
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Second problem

Surfaces in C° with smooth normalisation

X =o71(0) c (C3 x C,0),

family of reduced hypersurfaces in C3, defined by
¢ (C®xC,0)— (C,0).

X; = ¢;1(0), X;c C®.

Suppose that X has a smooth normalisation.

Question: If X is topologically equisingular, does it follow that mg(X;) is

constant ? -
)
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Second problem

For a family of surfaces X c (C3 x C,0) whose normalisation is
smooth, we can associate a family of parametrizations
fr : (C2,0) — (C3,0) whose images are X;. More precisely,
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Second problem

For a family of surfaces X c (C3 x C,0) whose normalisation is
smooth, we can associate a family of parametrizations
fr : (C2,0) — (C3,0) whose images are X;. More precisely,

X = F(C?xC),
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Second problem

For a family of surfaces X c (C3 x C,0) whose normalisation is
smooth, we can associate a family of parametrizations
fr : (C2,0) — (C3,0) whose images are X;. More precisely,

X =F(C?xC), F:(C®xC,0)— (C3xC,0),
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Second problem

For a family of surfaces X c (C3 x C,0) whose normalisation is
smooth, we can associate a family of parametrizations
fr : (C2,0) — (C3,0) whose images are X;. More precisely,

X =F(C?xC), F:(C?®xC,0)— (C*xC,0), F(x,y,t)=(fi(x,y),t).
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Second problem

For a family of surfaces X c (C3 x C,0) whose normalisation is
smooth, we can associate a family of parametrizations
fr - (C2,0) — (C3,0) whose images are X;. More precisely,

X =F(C?xC), F:(C?®xC,0)— (C*xC,0), F(x,y,t)=(fi(x,y),t).

We consider 1-parameter unfoldings F of A-finitely determined
map-germs f : (C2,0) — (C3,0).
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Second problem

(Mather-Gaffney geometric criterion) f : (C2,0) — (C3,0) is A—finitely
determined if and only if for all representative of f, there exists a
neighborhood U of 0 in C? such that

Transversal
double points

U\ {0} fF(U)\ {0}

the singularities of f(U) \ {0} are just transversal double points.
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Second problem

Example: f(x,y) = (x, y?, xy® — x3y), the singularity C3 of Mond’s list

DY
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Second problem

Example: f(x,y) = (x, y?, xy® — x3y), the singularity C3 of Mond’s list

DY

The double point curve is denoted by D(f).
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Second problem

Double point set

D(f) == {(x,y) € U+ F(f(x,y)) # {(x, 1)} U Z(1)}
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Second problem

Double point set

D(f) == {(x,y) € U+ F(f(x,y)) # {(x, 1)} U Z(1)}

e We can give an analytic structure for D(f) such that:
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Second problem

Double point set

D(f) == {(x,y) € U+ F(f(x,y)) # {(x, 1)} U Z(1)}
e We can give an analytic structure for D(f) such that:

Theorem - Marar and Mond (1989); Marar, Nufio-Ballesteros and
Penafort-Sanchis (2012)

Let f: (C?,0) — (C3,0) be a finite and generically 1-to-1 map germ.
Then
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Double point set

D(f) == {(x,y) € U+ F(f(x,y)) # {(x, 1)} U Z(1)}
e We can give an analytic structure for D(f) such that:

Theorem - Marar and Mond (1989); Marar, Nufio-Ballesteros and
Penafort-Sanchis (2012)

Let f: (C?,0) — (C3,0) be a finite and generically 1-to-1 map germ.
Then

f is finitely determined < D(f) is reduced.
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Second problem

Double point set

D(f) == {(x,y) € U+ F(f(x,y)) # {(x, 1)} U Z(1)}
e We can give an analytic structure for D(f) such that:

Theorem - Marar and Mond (1989); Marar, Nufio-Ballesteros and
Penafort-Sanchis (2012)

Let f: (C?,0) — (C3,0) be a finite and generically 1-to-1 map germ.
Then

f is finitely determined < D(f) is reduced.

Since D(f) is reduced, we can consider its Milnor number, p(D(f)).
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Second problem

Double point set

D(f) == {(x,y) € U+ F(f(x,y)) # {(x, 1)} U Z(1)}
e We can give an analytic structure for D(f) such that:

Theorem - Marar and Mond (1989); Marar, Nufio-Ballesteros and
Penafort-Sanchis (2012)

Let f: (C?,0) — (C3,0) be a finite and generically 1-to-1 map germ.
Then

f is finitely determined < D(f) is reduced.

Since D(f) is reduced, we can consider its Milnor number, p(D(f)).
Definition:
F is a u-constant unfolding if (D(f;)) is independent of ¢.
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Second problem

Topological triviality

We say F is a A-topologically trivial if there are germs of
homeomorphisms H and K such that

(C2 x C,0) —F=(C3 x C,0)

4ok

(€2 x C,0) % (¢8 x C,0)

where H and K are unfoldings of the identity.
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Second problem

Whitney equisingularity
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Second problem

Whitney equisingularity

Gaffney (Top. 1993)
Let F be a 1-parameter unfolding of a .4-finite map-germ
f:(C2,0) — (C3,0). If Fis pu-constant, then F is excellent.
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Second problem

Whitney equisingularity

Gaffney (Top. 1993)
Let F be a 1-parameter unfolding of a .4-finite map-germ
f:(C2,0) — (C3,0). If Fis pu-constant, then F is excellent.

An excellent unfolding has a natural stratification whose strata in the
complement of the parameter space T are the stable types in source
and target.
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Second problem

Whitney equisingularity

Gaffney (Top. 1993)
Let F be a 1-parameter unfolding of a .4-finite map-germ
f:(C2,0) — (C3,0). If Fis pu-constant, then F is excellent.

An excellent unfolding has a natural stratification whose strata in the
complement of the parameter space T are the stable types in source
and target.

The strata in the source are the following:
{C®x C\ D(F), D(F)\T, T}
In the target, the strata are

(€2 €\ F(E X ©) F(E < ©)\FIO(F)). FO(F)\T. T)- g8
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Second problem

Whitney equisingularity

Gaffney (Top. 1993)
Let F be a 1-parameter unfolding of a .4-finite map-germ
f:(C2,0) — (C3,0). If Fis pu-constant, then F is excellent.

An excellent unfolding has a natural stratification whose strata in the
complement of the parameter space T are the stable types in source
and target.

The strata in the source are the following:
{C?2 x C\ D(F), D(F)\' T, T}
In the target, the strata are
{C® x C\ F(C? x C), F(C® x C)\ F(D(F)), F(D(F))\ T, T}. f@%

Notice that F preserves the stratification, that is, F sends-a stratum
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Second problem

Definition
An unfolding F as above is Whitney equisingular if the above
stratifications in source and target are Whitney equisingular along T.
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Second problem

Definition
An unfolding F as above is Whitney equisingular if the above
stratifications in source and target are Whitney equisingular along T.

R. - (1994)
(a) Fis u- constant
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Second problem

Definition
An unfolding F as above is Whitney equisingular if the above
stratifications in source and target are Whitney equisingular along T.

R. - (1994)
(a) Fis u- constant

(b) F is topologically trivial
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Second problem

Definition
An unfolding F as above is Whitney equisingular if the above
stratifications in source and target are Whitney equisingular along T.

R. - (1994)
(a) Fis u- constant

(b) F is topologically trivial
(c) F is Whitney equisingular.
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Second problem

Definition
An unfolding F as above is Whitney equisingular if the above
stratifications in source and target are Whitney equisingular along T.

R. - (1994)
(a) Fis u- constant

(b) F is topologically trivial
(c) F is Whitney equisingular.

Question: Does it follow that (a) <= (b) <= (c) ?
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Second problem

Definition
An unfolding F as above is Whitney equisingular if the above
stratifications in source and target are Whitney equisingular along T.

R. - (1994)
(a) Fis u- constant

(b) F is topologically trivial
(c) F is Whitney equisingular.

Question: Does it follow that (a) <= (b) <= (¢) ?  Answer: No.
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Second problem

Topological triviality: Callejas-Bedregal, Houston and R. (2006), Fernandez de
Bobadilla and Pe Pereira (2008)

F is topologically trivial < p(D(f;)) is constant.
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Second problem

Topological triviality: Callejas-Bedregal, Houston and R. (2006), Fernandez de
Bobadilla and Pe Pereira (2008)

F is topologically trivial < p(D(f;)) is constant.

Whitney equisingularity: Gaffney (1993); Marar, Nuiio-Ballesteros and
Penafort-Sanchis (2012)

@ Theorem: (Marar et al. (2012)) F is Whitney equisingular <=
w(D(f)), and u4(f(C?,0)) are independent of .
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Second problem

Topological triviality: Callejas-Bedregal, Houston and R. (2006), Fernandez de
Bobadilla and Pe Pereira (2008)

F is topologically trivial < p(D(f;)) is constant.

Whitney equisingularity: Gaffney (1993); Marar, Nuiio-Ballesteros and
Penafort-Sanchis (2012)

@ Theorem: (Marar et al. (2012)) F is Whitney equisingular <=
w(D(f)), and u4(f(C?,0)) are independent of .

11 (F(C?)) == p(Yp),
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Second problem

Topological triviality: Callejas-Bedregal, Houston and R. (2006), Fernandez de
Bobadilla and Pe Pereira (2008)

F is topologically trivial < p(D(f;)) is constant.

Whitney equisingularity: Gaffney (1993); Marar, Nuiio-Ballesteros and
Penafort-Sanchis (2012)

@ Theorem: (Marar et al. (2012)) F is Whitney equisingular <=
w(D(f)), and u4(f(C?,0)) are independent of .

1 (F(C?)) = u(Yo),
where Yy := f(C2) N H, and H is a generic plane in C3, passing
through the origin. @
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Second problem

In 1994, there were few known classes of examples to test the
problem.
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Second problem

In 1994, there were few known classes of examples to test the
problem.

e Marar and Nurfio-Ballesteros. A note on finite determinacy for corank
2 map germs from surfaces to 3-space, Math. Proc. Cambr. Phil. Soc.,
(2008).

e Marar, Nuno-Ballesteros and Penafort-Sanchis. Double point curves
for corank 2 map germs from C? to C3. Topology Appl., (2012).

e Marar and Nufo-Ballesteros. Slicing corank 1 map germs from C? to
C3. Quart. J. Math., (2014).

e Penafort-Sanchis. Reflection Maps, Mathematische Annalen, (202%_‘

Among others...
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Second problem

O. N. Silva (Thesis), O. N. Silva and R. (2019)
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Second problem

O. N. Silva (Thesis), O. N. Silva and R. (2019)

Example
f:(C?0) = (C3,0), f(x,y) = (X%, Xy + xy* + y3, x° + y°), and
fi(x,y) = (X + txy, Xy + xy2 + y3, x° + y°)

@ n(D(ft)) = 441 for all t, then F is topologically trivial.
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Second problem

0. N. Silva (Thesis), O. N. Silva and R. (2019)

Example

f:(C?,0) — (C30), f(x,y) = (x? x?y +xy®+y3, x5+ y°), and
fix,y) = (0@ + txy, Py +xy2 +y°, x°+y°)

@ n(D(ft)) = 441 for all t, then F is topologically trivial.

H = V(aX + bY + ¢Z) generic hyperplane,
(Y1,0) = V(a(x® + txy) + b(x®y + xy? + y®) + c(x® + y°))
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Second problem

0. N. Silva (Thesis), O. N. Silva and R. (2019)

Example

f:(C?,0) — (C30), f(x,y) = (x? x?y +xy®+y3, x5+ y°), and
fix,y) = (0@ + txy, Py +xy2 +y°, x°+y°)

@ n(D(ft)) = 441 for all t, then F is topologically trivial.

H = V(aX + bY + ¢Z) generic hyperplane,
(Y1,0) = V(a(x® + txy) + b(x®y + xy? + y®) + c(x® + y°))

@ 1(Yy,0) =2and u(Y;,0) =1 fort+#0, so puq(f(C?)) not constant.

.
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Second problem

0. N. Silva (Thesis), O. N. Silva and R. (2019)

Example

f:(C?,0) — (C30), f(x,y) = (x? x?y +xy®+y3, x5+ y°), and
fix,y) = (0@ + txy, Py +xy2 +y°, x°+y°)

@ n(D(ft)) = 441 for all t, then F is topologically trivial.

H = V(aX + bY + ¢Z) generic hyperplane,
(Y1,0) = V(a(x® + txy) + b(x®y + xy? + y®) + c(x® + y°))

@ 1(Yy,0) =2and u(Y;,0) =1 fort+#0, so puq(f(C?)) not constant.

@ my(f(D(f))) = 22 and my(f(C?)) = 6 for all t.
Hence F is not Whitney equisingular.
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Second problem

Ft 1% mq
(Corank 1 case) (Y,0)  (%,0) | £(D(f)) | f(D(f))
YAy +xy° + Yo+ ty) 0 0 9 8
(x, 8, xBy + xy™® + y" + ty'%) 0 0 35 33

(Corank 2 case)

(X2 + txy, X2y + xy2 + ¥, x5+ y°) 2 1 22 22

O, y5, X% — xy + y2 + tx®) 1 1 23 22
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Second problem

Theorem: (O. N. Silva and M.A.S.R. (2019), O. N. Silva (2020))

aw
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Second problem

Theorem: (O. N. Silva and M.A.S.R. (2019), O. N. Silva (2020))
e Let f: (C?,0) — (C3,0) be a finitely determined map germ.
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Second problem

Theorem: (0. N. Silva and M.A.S.R. (2019), O. N. Silva (2020))
e Let f: (C?,0) — (C3,0) be a finitely determined map germ.
e f is quasihomogeneous and has corank 1.
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Second problem

Theorem: (0. N. Silva and M.A.S.R. (2019), O. N. Silva (2020))
e Let f: (C?,0) — (C3,0) be a finitely determined map germ.
e f is quasihomogeneous and has corank 1.

e Write f in the form f(x, y) = (x, p(x, ¥),q(x,y)), set do = deg(p) ,
d; = deg(q) and suppose one of the following conditions:

o

aw
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Second problem

Theorem: (0. N. Silva and M.A.S.R. (2019), O. N. Silva (2020))
e Let f: (C?,0) — (C3,0) be a finitely determined map germ.
e f is quasihomogeneous and has corank 1.

e Write f in the form f(x, y) = (x, p(x, ¥),q(x,y)), set do = deg(p) ,
d; = deg(q) and suppose one of the following conditions:

(1) the weights of the variables are w(x) =1 and w(y) = b > 2.

o

aw
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Second problem

Theorem: (0. N. Silva and M.A.S.R. (2019), O. N. Silva (2020))
e Let f: (C?,0) — (C3,0) be a finitely determined map germ.
e f is quasihomogeneous and has corank 1.

e Write f in the form f(x, y) = (x, p(x, ¥),q(x,y)), set do = deg(p) ,
d; = deg(q) and suppose one of the following conditions:

(1) the weights of the variables are w(x) =1 and w(y) = b > 2.

(2) the weights of the variables are w(x) = w(y) = 1 with
gcd(dz, d3) # 2.

o

aw
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Second problem

Theorem: (0. N. Silva and M.A.S.R. (2019), O. N. Silva (2020))
e Let f: (C?,0) — (C3,0) be a finitely determined map germ.
e f is quasihomogeneous and has corank 1.

e Write f in the form f(x, y) = (x, p(x, ¥),q(x,y)), set do = deg(p) ,
d; = deg(q) and suppose one of the following conditions:

(1) the weights of the variables are w(x) =1 and w(y) = b > 2.
(2) the weights of the variables are w(x) = w(y) = 1 with
gcd(ds, d3) # 2.

e Let F = (f;, t) be an unfolding of f. Then

F is topologically trivial & F is Whitney equisingular < u(D(f)) is
constant.
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Second problem

Congratulations, David!!
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