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We will consider the following Sobolev space of bounded
subanalytic manifold M:

W1,p(M) := {u ∈ Lp(M), |∂u| ∈ Lp(M)},

where ∂u stands for the gradient of u in the sense of distributions.

It is well known that this space, equipped with the norm

||u||W1,p(M) := ||u||Lp(M) + ||∂u||Lp(M)

is a Banach space, in which C∞(M) is dense for all p ∈ [1,∞).
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Definition

We say that M is connected at x ∈ δM = M \M if B(x , ε)∩M is
connected for all ε > 0 small enough.

We say that M is normal if it is connected at each x ∈ δM.
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Theorem

If M is normal then for all p ∈ [1,∞) sufficiently large C∞(M) is
dense in W1,p(M).
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Assume that M is normal and let A be a subanalytic subset of δM.
For all p ∈ [1,∞) sufficiently large, we have:

Theorem

If S is a stratification of A, then C∞
M\A(M) is a dense subspace of⋂

Y∈S
ker trY .

In particular, in the case where A is dense in δM, we get:

Corollary

If Σ is a stratification of a dense subset of δM then C∞0 (M) is
dense in

⋂
S∈Σ

ker trS for all p ∈ [1,∞) sufficiently large.
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Remarks

The condition of being normal is proved to be necessary:

Theorem

C∞(M) is dense in W1,p(M) for arbitrarily large values of p if and
only if M is normal.

If the manifold M is unbounded, the trace is well-defined and it is
Lploc on the boundary.
Since we can use cutoff functions, the density results remain true in
the unbounded case.
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Definition

A C∞ normalization of M is a definable C∞ diffeomorphism
h : M̌ → M satisfying supx∈M̌ |Dxh| <∞ and
supx∈M |Dxh

−1| <∞, with M̌ normal C∞ submanifold of Rk , for
some k .

Proposition

Every bounded definable manifold admits a C∞ normalization.
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Fix a normalization h : M̌ → M. As h and h−1 have bounded
derivative the mapping h∗ :W1,p(M̌)→W1,p(M), u 7→ u ◦ h−1 is
a continuous isomorphism for all p. The Main Theorem thus
immediately yields that for p ∈ [1,∞) sufficiently large, the space

C h(M) := h∗C
∞(M̌) = {u ◦ h−1 : u ∈ C∞(M̌)}

is dense in W1,p(M).

Although the functions of C h(M) may fail to be smooth on M, this
ring is satisfying for many purposes. A given function v of this ring
has the property that for every x0 in M the restriction of v to a
connected component U of B(x0, ε) ∩M, ε > 0 small, extends to a
function which is Lipschitz with respect to the inner metric.
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Proposition

There are stratifications Š and S of δM̌ and δM respectively such
that for each S ∈ S, h−1

(S) =
⋃j

i=1 Si , where, for each i ≤ j , Si is
a stratum of Š on which h induces a diffeomorphism hSi : Si → S
satisfying supx∈Si |DxhSi | <∞ and supx∈S |Dxh

−1
Si
| <∞.
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Proposition

There are stratifications Š and S of δM̌ and δM respectively such
that for each S ∈ S, h−1

(S) =
⋃j

i=1 Si , where, for each i ≤ j , Si is
a stratum of Š on which h induces a diffeomorphism hSi : Si → S
satisfying supx∈Si |DxhSi | <∞ and supx∈S |Dxh

−1
Si
| <∞.

Let l := supx∈M cM(x), fix S ∈ S. We define
trS :W1,p(M)→ Lp(S)l by setting for v ∈ W1,p(M) (and
p ∈ [1,∞) large):

trSv :=
(

(trS1v ◦ h) ◦ h−1
S1
, . . . , (trSj v ◦ h) ◦ h−1

Sj
, 0, . . . , 0

)
.
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Theorem

Let A ⊂ δM be a subanalytic set of dimension k . For p ∈ [1,∞)
sufficiently large, the linear operator

trA :W1,p(M)→ Lp(A,Hk)l ,

is bounded.

Proposition

Let A ⊂ δM be subanalytic. If p is sufficiently large then, for every
v ∈ W1,p(M), the set of functions {trA,1 v , . . . , trA,l v} does not
depend on the chosen C∞ normalization.
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Lipschitz Conic Structure

Theorem (G. Valette)

Let X ⊂ Rn be subanalytic and x0 ∈ X . For ε > 0 small enough,
there exists a Lipschitz subanalytic homeomorphism

H : x0 ∗ (S(x0, ε) ∩ X )→ B(x0, ε) ∩ X ,

satisfying H|S(x0,ε)∩X = Id , preserving the distance to x0, and
having the following metric properties:

1 Indeed, there is a constant C such that for every fixed
s ∈ [0, 1], the mapping rs defined by x 7→ rs(x) := r(s, x), is
Cs-Lipschitz.

2
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Lipschitz Conic Structure

Theorem (G. Valette)
1 The natural retraction by deformation onto x0

r : [0, 1]× B(x0, ε) ∩ X → B(x0, ε) ∩ X ,

defined by

r(s, x) := H(sH−1(x) + (1− s)x0),

is Lipschitz.

Indeed, there is a constant C such that for every
fixed s ∈ [0, 1], the mapping rs defined by
x 7→ rs(x) := r(s, x), is Cs-Lipschitz.

2
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Lipschitz Conic Structure

Theorem (G. Valette)

1 Indeed, there is a constant C such that for every fixed
s ∈ [0, 1], the mapping rs defined by x 7→ rs(x) := r(s, x), is
Cs-Lipschitz.

2 For each δ > 0, the restriction of H−1 to
{x ∈ X : δ ≤ ||x − x0|| ≤ ε} is Lipschitz and, for each
s ∈ (0, 1], the map r−1

s : B(x0, sε) ∩ X → B(x0, ε) ∩ X is
Lipschitz.
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Example

X := {(x , y) ∈ [0, 1]× R : |y | ≤ x2}

with x0 = (0, 0).

For each (x , y) ∈ x0 ∗ (S(0, 1) ∩ X ), let

H(x , y) := (t(x , y)x , t2(x , y)xy),

where

t(x , y) =

(
2x2 + 2y2

x2 +
√

x4 + 4x2y2(x2 + y2)

)1/2

.

A straightforward computation yields that on x0 ∗ (S(0, 1) ∩ X ) we
have |∂t(x , y)| ≤ C

x for some positive constant C .
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Łojasiewicz’s inequality
The operator ΘM

The operator RM

Łojasiewicz’s inequality

Theorem
Let f and g be two globally subanalytic functions on a globally
subanalytic set A with sup

x∈A
|f (x)| <∞. Assume that

lim
t→0

f (γ(t)) = 0 for every globally subanalytic arc γ : (0, ε)→ A

satisfying lim
t→0

g(γ(t)) = 0.

Then there exist ν ∈ N and C ∈ R such that for any x ∈ A:

|f (x)|ν ≤ C |g(x)|.
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Łojasiewicz’s inequality
The operator ΘM

The operator RM

There is a positive constant C such that:

1 For all s ∈ (0, 1) we have for almost all x ∈ Mε:∣∣∣∣∂r∂s (s, x)

∣∣∣∣ ≤ C |x |.

2 For each v ∈ Lp(Mε), p ∈ [1,∞), we have for all η ∈ (0, ε]
and all s ∈ (0, 1]:

1
C

(∫ η

0
||v ||p

Lp(Nζ)
dζ

)1/p

≤ ||v ||Lp(Mη) ≤ C

(∫ η

0
||v ||p

Lp(Nζ)
dζ

)1/p

.

3 There exists ν ∈ N such that for each v ∈ Lp(Mε),
p ∈ [1,∞), η ∈ (0, ε), and s ∈ (0, 1):

||v ◦ rs ||Lp(Nη) ≤ Cs−ν/p||v ||Lp(Nsη).
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The operator ΘM

For u ∈ W1,p(Mε) and x ∈ Mε we set:

ΘMu(x) :=

∫ 1

0

∂(u ◦ r)

∂s
(s, x) ds =

∫ 1

0
< ∂u(rs(x)),

∂r

∂s
(s, x) > ds.

Lemma

For p sufficiently large, the function [0, 1] 3 s 7→ ||∂(u◦rs)
∂s ||Lp(Mε)

belongs to L1([0, 1]) for all u ∈ W1,p(Mε), so that ΘMu is
well-defined. Moreover, for u ∈ W1,p(Mε) and η < ε, we then
have:

||ΘMu||Lp(Nη) . η
1− 1

p ||u||W1,p(Mη).
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The operator ΘM

For u ∈ W1,p(Mε) and x ∈ Mε we set:

ΘMu(x) :=

∫ 1

0

∂(u ◦ r)

∂s
(s, x) ds =

∫ 1

0
< ∂u(rs(x)),

∂r

∂s
(s, x) > ds.

Lemma

For p sufficiently large, the function [0, 1] 3 s 7→ ||∂(u◦rs)
∂s ||Lp(Mε)

belongs to L1([0, 1]) for all u ∈ W1,p(Mε), so that ΘMu is
well-defined. Moreover, for u ∈ W1,p(Mε) and η < ε, we then
have:

||ΘMu||Lp(Nη) . η
1− 1

p ||u||W1,p(Mη).
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Proof of the lemma

For u ∈ W1,p(Mε), we have:∫ 1

0
||∂(u ◦ rs)

∂s
||Lp(Mε)ds =

∫ 1

0

(∫
Mε

∣∣∣∣∂(u ◦ r)

∂s
(s, x)

∣∣∣∣p dx

)1/p

ds

.
∫ 1

0

(∫
Mε

|∂u(rs(x))|p dx

)1/p

ds

.
∫ 1

0
s
−ν
p ||∂u||Lp(Msε)ds

≤ ||∂u||pLp(Mε)

∫ 1

0
|s|−ν/pds,

which is finite for p > ν.
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Proof of the lemma

||ΘMu||Lp(Nη) ≤
∫ 1

0

(∫
Nη
|∂u(rs(x))|p

∣∣∣∣∂r∂s (s, x)

∣∣∣∣p dx

)1/p

ds

(1)

. η

∫ 1

0

(∫
Nη
|∂u(rs(x))|p dx

)1/p

ds

(3)

. η

∫ 1

0
|s|−ν/p||∂u||Lp(Nsη)ds

≤ η

(∫ 1

0
|s|−νp′/pds

)1/p′ (∫ 1

0
||∂u||pLp(Nsη)ds

)1/p

. η

(∫ 1

0
||∂u||pLp(Nsη)ds

)1/p

(for p > νp′)
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Proof of the lemma

||ΘMu||Lp(Nη) ≤ . . .

. η

(∫ 1

0
||∂u||pLp(Nsη)ds

)1/p

(for p > νp′)

= η1−1/p
(∫ η

0
||∂u||pLp(Nt)dt

)1/p

(setting t := sη)

(2)

. η1−1/p||∂u||Lp(Mη).
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For u ∈ W1,p(Mε) (and p sufficiently large for ΘM to be defined)
we set:

RMu := u −ΘMu.

Lemma

For p sufficiently large, RMu is constant on every connected
component of Mε, for all u ∈ W1,p(Mε). Moreover, ΘM and RM

are then continuous projections and, if u extends to a continuous
function on Mε then RMu ≡ u(0).
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Theorem

Let Ω ⊂ Rn be a bounded connected open subanalytic subset. For
each p ≥ 1, there exists C > 0 such that for any u ∈W 1,p(Ω) the
following inequality holds

||u − uΩ||p ≤ C ||∇u||p,

where uΩ := 1
|Ω|
∫

Ω u(x) dx .
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Lemma

Let Ω ⊂ Rn be a bounded open connected subanalytic subset.
There exists a subanalytic map

h : Ω× [0, 1]→ Ω, (x , s) 7→ hs(x)

continuous with respect to the second variable and such that
1 h1(Ω) ⊂ B(z , α) ⊂ Ω for some α > 0 and z ∈ Ω;
2 dxht is invertible for almost every (x , t) ∈ Ω× [0, 1], and

moreover there exists C > 0 such that whenever dxht is
invertible, we have ||dxh−1

t || ≤ C .
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Lemma

Let Ω ⊂ Rn be an open bounded connected subanalytic subset.
There exists a subanalytic family of continuous arcs
γx ,y : [0, 1]→ Ω, x , y ∈ Ω, such that γ(0) = x , γ(1) = y for each
such x and y , and ||γ′x ,y (s)|| ≤ C for all s ∈ (0, 1), and some
constant C independent of x and y . Moreover, there is η > 0 such
that for almost every x , y ∈ Ω:{

jac(Γs,y )(x) ≥ η, s ≥ 1
2

jac(Γ̃s,x)(y) ≥ η, s < 1
2

where Γs,y : Ω 3 x 7→ γx ,y (s) ∈ Ω and Γ̃s,x : Ω 3 y 7→ γx ,y (s) ∈ Ω.
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Theorem

For every definable family Ω ⊂ Rn × Rk there is a constant C such
that for all t ∈ Rk and all u ∈W 1,p(Ωt , δΩt) we have:

||u||Lp(Ωt) ≤ C |Ωt |1/n||∇u||Lp(Ωt).
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Thank you !
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