PRESENTATION MEMOIRE M2 : HYPERCYCLICITE
Table des matières
1 Introduction 5
2 Hypercyclicité 5
2.1 Inexistence d'opérateurs hypercycliques sur un espace de dimension finie 7
2.2 Exemples classiques d'opérateurs hypercycliques 8
2.2.1 Exemple 1 : G.D. Birkhoff, 1929 8
2.2.2 Exemple 2 : G.R. Maclane, 1951 8
2.2.3 Exemple 3 : S.Rolewicz, 1969 8
2.2.4 Exemple 4 : Opérateurs de décalage pondéré 9
3 Ensembles de Vecteurs hypercycliques 10
4 Vecteurs communs hypercycliques 11
4.1 Vecteurs communs hypercycliques et transitivité 12
4.1.1 Faits généraux 12
4.1.2 Opérateurs de translations 13
4.1.3 Un critère d'hypercyclicité avec paramètre 15
4.2 Critère d'hypercyclicité commune 16
4.2.1 Critère de base 16
4.2.2 Le critère de Costakis - Sambarino 17
4.2.3 La construction d'Abakumov - Gordon 19
4.2.4 Une comparaison 20
4.3 Un résultat négatif sur des ensembles rares des opéra- teurs de décalage 21

Remerciements

Je remercie avant tout Alexander Borichev pour m'avoir proposé un sujet de Mémoire de M2. Je tiens également à lui témoigner ma reconnaissance pour sa disponibilité.
Je souhaite remercier sincèrement Claudio Murolo pour sa gentillesse et son enthousiasme communicatif.
Je remercie aussi les professeurs qui ont acceptés de faire parti du jury.

Résumé

Dans ce mémoire on propose d'étudier quelques opérateurs hypercycliques (transformations hypercycliques) classiques dont la translation et la dérivation dans l'espace des fonctions entières. Le mémoire est constitué de quatre sections.

La section 1 introduit le concept d'hypercyclicité.
La section 2 présente, d'une part, comment prouver qu'un opérateur est hypercyclique et, d'autre part, des exemples classiques de transformations hypercycliques.

La section 3 présente la structure que peut avoir un ensemble constitué de vecteurs hypercycliques.

Dans la section 4 nous abordons l'hypercyclicité simultanée d'une famille $\left(T_{\lambda}\right)$ de transformations hypercycliques.

1 Introduction

Soit X un espace vectoriel topologique et T un opérateur linéaire continu de X dans lui-même. On dit que l'opérateur T est hypercyclique lorsqu'il admet un vecteur x dont l'orbite $\operatorname{Orb}(\mathrm{x})=$ $\left\{x, T x, T^{2} x, \ldots\right\}$ est dense dans X.

Alors que les applications linéaires en dimension fnie sont bien comprises grâce à leur forme de Jordan, la situation est nettement plus compliquée en dimension infinie, oú des phénoménes frappants, comme l'hypercyclicité, apparaissent.

La notion se trouve être directement liée au célèbre problème du sous-espace invariant, toujours ouvert : si T est un oprateur linéaire borné agissant sur un espace de Banach X de dimension infinie, estil vrai qu'il existe toujours un sous-espace fermé Y de X, non réduit a zéro et distinct de X tout entier, tel que Y soit invariant par T ?

Etant donné un opérateur linéaire continu sur un espace de Banach séparable, comment prouver qu'il est hypercyclique?

Pour répondre á cette question nous disposons de plusieurs théorèmes donnant des critères d'hypercyclicité.

2 Hypercyclicité

Théorème 2.1 (Transitivité de Birkhoff). Soient X un F espace séparable et T un opérateur linéaire continu sur X. Alors les propriétés suivantes sont équivalentes :
(i) T est hypercyclique.
(ii) T est topologiquement transitif : pour tous ouverts non-vides U et V de X, il existe un entier n tel que $T^{n}(U) \bigcap V \neq \emptyset$.
De plus, dans ce cas $H C(T)$ est un sous ensemble G_{δ} dense de X.

