Feuille de TD 1+ : Dualité, aspects effectifs

Exercice 1 Le but de l'exercice est de déterminer un système d'équation pour un sous-espace vectoriel V de \mathbb{R}^5 .

- 1. Soit $a=(1,2,0,0,0),\ b=(3,4,0,0,0)$ et c=(0,0,1,1,1) trois vecteurs de \mathbb{R}^5 et V le sous-espace vectoriel vect(a,b,c) de \mathbb{R}^5 engendré par $\{a,b,c\}$. Montrer que $\{a,b,c\}$ est une famille libre et la completer en une base \mathcal{B} de \mathbb{R}^5 .
- 2. Déterminer la base duale de la base \mathcal{B} de \mathbb{R}^5 .
- 3. Déterminer l'annulateur V° du sous-espace vectoriel V. Déterminer un système d'équation pour V.
- 4. Soit d = (1, 4, 1, 2, 0) et V' = vect(a, b, c, d) = V + vect(d). En utilisant la formule (de l'exercice 4 de la feuille précédente)

$$(V')^{\circ} = (V + vect(d))^{\circ} = V^{\circ} \cap (vect(d))^{\circ},$$

déterminer l'annulateur $(V')^{\circ}$ de V' et un système d'équation pour V'.

Exercice 2 Déterminer un système d'équation pour le sous-espace W de \mathbb{R}^4 engendré par $\alpha = (1, 2, -3, 2), \beta = (1, 1, -2, 2), \gamma = (0, 1, -1, 0).$

Exercice 3 Soit a = (1, 2, 0), b = (3, 4, 0) et c = (0, 0, 1) trois vecteurs de \mathbb{R}^3 .

- 1. Montrer que $\mathcal{B} = \{a, b, c\}$ est une base de \mathbb{R}^3 .
- 2. Déterminer la base duale de la base \mathcal{B} de \mathbb{R}^3 .
- 3. Déterminer une forme linéaire sur \mathbb{R}^3 qui vaut 1 sur a, 2 sur b et 3 sur c.

Exercice 4 Soit $E = \mathbb{R}_2[X]$ l'espace vectoriel sur \mathbb{R} des polynômes en une indéterminée, à coefficients réels et de degré au plus 2 muni de la base $\mathcal{B} = \{1, X, X^2\}$. Soit $\mathcal{B}_0 = \{e_1, e_2\}$ la base canonique de \mathbb{R}^2 et $(\mathcal{B}_0)^* = \{e_1^*, e_2^*\}$ sa base duale. Considérons l'application

$$\begin{array}{ccc} f: & E & \to & \mathbb{R}^2 \\ & P & \mapsto & \begin{pmatrix} P(1) \\ P(2) \end{pmatrix} \end{array}$$

- 1. Écrire la matrice de f dans les bases \mathcal{B} et \mathcal{B}_0 .
- 2. Écrire la matrice de ${}^{t}f$ dans les bases $(\mathcal{B}_{0})^{\star}$ et \mathcal{B}^{\star} .
- 3. Compléter

$${}^{t}f: \qquad (\mathbb{R}^{2})^{\star} \qquad \rightarrow \qquad E^{\star}$$

$$u = \lambda e_{1}^{\star} + \mu e_{2}^{\star} \quad \mapsto \quad \left\{ \begin{array}{ccc} {}^{t}f(u): & E & \rightarrow & \mathbb{R} \\ & P = a + bX + cX^{2} & \mapsto \end{array} \right.$$