

Année universitaire 2016/2017

Site: ⊠ Luminy ⊠ St-Charles □ St-Jérôme □ Cht-Gombert ⊠ Aix-Montperrin □ Aubagne-SATIS

Suiet de : \square 1^{er} semestre \boxtimes 2 ème semestre \square Session 2 Durée de l'épreuve : 2h

Examen de : L1 Nom du diplôme : Licence Math-Info

Code du module : SMI2U1 Libellé du module : Analyse 1 Calculatrices autorisées : NON Documents autorisés : NON

EXERCICE 1 (Questions de cours [4 pt])

- 1. [0,5] Donner la définition formelle de : « la suite de réels $(u_n)_{n\in\mathbb{N}}$ converge vers π ».
- 2. [0,5] Donner la définition formelle de : « la fonction $f:\mathbb{R} \to \mathbb{R}$ tend vers π en 1 ».
- 3. [1,5 pt] Rappeler l'énoncé du théorème des accroissements finis.
- 4. [1,5] Donner la définition formelle de : « la fonction $f:\mathbb{R}\mapsto\mathbb{R}$ admet un développement limité d'ordre 2 en $0 \gg$.

EXERCICE 2 (Exemple d'une fonction admettant un développement limité d'ordre 2 mais qui n'est pas dérivable 2 fois [9 pt])

Soit $f: \mathbb{R}^* \to \mathbb{R}$ la fonction définie par $f(x) = x^3 \sin\left(\frac{1}{x}\right)$.

- 1. $^{[0,5\text{ pt}]}$ Justifier que f est de classe C^{∞} sur \mathbb{R}^* .
- 2. [1 pt] Montrer que f admet une limite l en 0 que l'on calculera.

On en déduit que f est prolongeable par continuité et on définit $g: \mathbb{R} \to \mathbb{R}$ par g(x) = g(x) et g(0) = l, la limite calculée à la question précédente.

- 3. [2 pt] Calculer la dérivée et la dérivée seconde de g en $x \in \mathbb{R}^*$.
- 4. [1 pt] Montrer que q est dérivable en 0 et calculer sa dérivée en 0.
- 5. [1 pt] Montrer que la fonction $q': \mathbb{R} \to \mathbb{R}$ est continue en 0.
- 6. [2 pt] Montrer que la fonction g' n'est pas dérivable en 0.
- 7. [1 pt] Montrer qu'il existe une fonction $\varepsilon : \mathbb{R} \to \mathbb{R}$ telle que $q(x) = x^2 \varepsilon(x)$ pour tout $x \in \mathbb{R}$ et $\varepsilon(x) \to 0$ quand
- 8. [0,5 pt] Déduire de ce qui précède que q admet un développement limité d'ordre 2 (lequel?) en 0.

EXERCICE 3 (Concavité de ln [7 pt])

Soit deux réels a et b tels que 0 < a < b.

1. [1 pt] Montrer que : $a < \frac{b-a}{\ln b - \ln a} < b$ (cette question est indépendante de la suite).

On définit $f: [0,1] \mapsto \mathbb{R}$ par $f(t) = \ln((1-t)a + tb) - (1-t)\ln a - t\ln b$.

- 2. [1 pt] Justifier que f est dérivable, de dérivée continue (f est de classe C^1) sur [0,1] et calculer sa dérivée f'.
- 3. [1 pt] Montrer qu'il existe $t_0 \in [0, 1]$ tel que $f'(t_0) = 0$
- 4. [1 pt] Justifier que f' est dérivable sur [0,1] et calculer sa dérivée f'' (qui est donc la dérivée seconde de f).
- 5. [2 pt] Montrer que f' est croissante sur [0,1]. En déduire son signe sur [0,1] puis le tableau de variation de f.
- 6. [1 pt] Calculer f(0) et f(1) et déduire de tout ce qui précède l'inégalité : $\ln((1-t)a+tb) \geqslant (1-t)\ln a + t\ln b$.

EXERCICE 4 (Développements limités [6 pt])

- 1. $[5 \times 0, 5 = 2, 5 \text{ pt}]$ Donner les développements limités d'ordre 3 en 0 des fonctions suivantes :
 - 1.1. $x \mapsto \ln(1+x)$;
 - 1.2. $x \mapsto \cos(x)$;
 - 1.3. $x \mapsto \sin(x)$;
 - 1.4. $x \mapsto \cosh(x)$;
 - 1.5. $x \mapsto \sinh(x)$.
- 2. [1,5 pt] Soit $\alpha \in \mathbb{R}$. Calculer $\lim_{x \to 0^+} \frac{1}{x} \ln(1 + \alpha x)$; en déduire $\lim_{n \to +\infty} \left(1 + \frac{\alpha}{n}\right)^n$. 3. [2 pt] Calculer $\lim_{x \to 0} \frac{\sin(x) \cosh(x) \sinh(x) \cos(x)}{\sin^3(x)}$.