Introduction à l'analyse

Partiel 2 – 27 novembre 2015

Calculette et documents non autorisés

Durée : 2 heures

Exercice 1

Questions de cours

- 1. Soit $a \in]0, +\infty[$ et soit $x \in \mathbb{R}$. Donner la définition du nombre a^x .
- 2. Enoncer le théorème de l'intégration par parties.
- 3. En déduire la valeur de $\int_0^{\frac{\pi}{5}} x \cos(5x) dx$.

Exercice 2

On considère la fonction

$$f:]0, +\infty[\to \mathbb{R}$$

 $x \to x^{-\ln(x)}$

- 1. Montrer que, pour tout $x \in]0, +\infty[$, $f(x) = \exp[-(\ln(x))^2]$.
- 2. Calculer

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) \quad \text{ et } \quad \lim_{x \to +\infty} f(x).$$

- 3. Justifier que f est dérivable sur $]0, +\infty[$ et calculer la dérivée de f sur cet intervalle.
- 4. Déterminer, en utilisant les théorèmes du cours, les ensembles f(]0,1[) et $f([1,+\infty[), puis en déduire l'ensemble <math>f(]0,+\infty[)$.

Exercice 3

On considère la fonction

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \to \arcsin\left(\frac{1+x}{1-x}\right).$$

- 1. Étudier la fonction $u: \mathbb{R} \to \mathbb{R}$ définie par $u(x) = \frac{1+x}{1-x}$: donner le domaine de définition, les calculs de limites et le tableau de variation de u.
- 2. En déduire l'ensemble de définition de f.
- 3. Calculer

$$\lim_{x \to -\infty} f(x) \quad \text{ et } \quad \lim_{\substack{x \to 0 \\ x < 0}} f(x).$$

4. Déterminer l'ensemble de dérivabilité $D_{f'}$ de f puis montrer que pour tout $x \in D_{f'}$:

$$f'(x) = \frac{1}{(1-x)\sqrt{-x}}.$$

Exercice 4

Pour chaque intégrale suivante, on demande de justifier l'existence puis de la calculer.

1.
$$I_1 = \int_0^1 \frac{x+1}{x^2+2x+1} dx$$
.

2.
$$I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\cos^2(x)} dx$$
.

3.
$$I_3 = \int_0^{\frac{\pi}{4}} \sin(x) \cos^2(x) dx$$
.