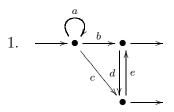
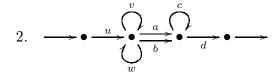
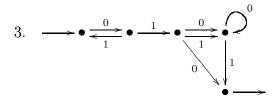
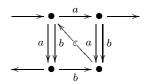
Mathématiques discrètes 2 Feuille d'exercices 4


Exercice 1. Soit Σ un alphabet non vide. Montrer que l'ensemble Σ^* des mots construits sur Σ , muni de la concaténation et du mot vide, est un monoïde.


Exercice 2. Soient M, N deux monoïdes et $\varphi: M \to N$ un morphisme de monoïdes. Montrer que l'on définit une congruence \equiv sur M en posant $x \equiv y$ si $\varphi(x) = \varphi(y)$.


Exercice 3. Construire le monoïde libre à un générateur.

Exercice 4. Soit Σ un alphabet non vide. On définit l'ordre préfixe sur le monoïde Σ^* par $u \sqsubseteq v$ s'il existe un mot u' tel que uu' = v. Montrer que c'est une relation d'ordre sur Σ^* qui admet un plus petit élément et des bornes inférieures. Montrer que (Σ^*, \sqsubseteq) n'est pas un treillis dès que Σ contient au moins deux lettres.


Exercice 5. Déterminer les langages reconnus par les automates suivants :

Exercice 6. Donner le langage reconnu par cet automate :

Construire un automate déterministe, puis un automate complet, reconnaissant le même langage.

Exercice 7. On fixe l'alphabet $\Sigma = \{a, b\}$. Construire des automates reconnaissant les langages suivants :

- 1. $L_1 = \Sigma^*$.
- 2. $L_2 = \Sigma^* u \Sigma^*$, où u est un mot de Σ^* fixé.
- 3. L_3 est l'ensemble des mots u de Σ^* qui contiennent un nombre pair de fois la lettre a.
- 4. $L_4 = \{ a^k b^k, 0 \le k \le 3 \}.$

Exercice 8. On considère l'alphabet $\{a,b\}$. Dire si les langages suivants sont réguliers ou non :

- 1. Le langage $L_5 = \{ (ab)^k, k \in \mathbb{N} \}.$
- 2. Le langage $L_6 = \{ a^k b^k, k \in \mathbb{N} \}.$

Exercice 9. Dire si l'implication suivante est vraie ou non : si L est un langage régulier et L' un sous-langage de L, alors L' est régulier.

Exercice 10. On considère l'ensemble des a^p où p est un nombre premier. Est-ce un langage régulier?