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Introduction

Linear Logic is:
e a Curry-Howard logic;
e a decomposition of intuitionistic logic;
e a symetrization of intuitionistic logic;
e a constructivization of classical logic;
e 3 new syntax for proofs;

To summarize: a useful tool for studying programming languages, particularly (extensions of) lambda-
calculus.

Coherent semantics

Coherent spaces
Coherent space X =
e a set | X| called the web of X;

o a reflexive, symetric relation <  on |X| called the coherence.

X
A cligue of X is a set x C | X| such that
for all a, b in z, a<y b

C(X) is the set of cliques of X.

An equivalent definition
Let | X| be a set and z,y C |X|; we define
zlyifflznyl <1
If C C P(|X]) then
Ct={yst. forallz € C,z L y}
A coherent space is a pair (| X|,C(X)) where | X| is a set and C(X) C P(X) is such that:

c(x)"t =c(x)



Stable functions
A function F : C(X) = C(Y) is stable if:

e it is continuous (increasing + commutation to directed unions);

e it commutes to compatible intersections:

for all z, y in C(X), if x Uy € C(X) then F(zNy) = F(z) N F(y)

Lemma 1 (Fundamental lemma of stable functions) F is stable iff
e it is increasing;
e for any z € C(X) and any b € F(x) there is xo Csn  such that:
— b€ F(xo);
— forally C z, if b € F(y) then zo C y.

The space X —» Y
The trace of F : X — Y is

Tr F = {(x0,b) s.t. Zo € Can(X) is minimal so that b € F(zo)}
The space X — Y is defined by:
o |X = Y[=Can(|X]) x |[Y];

® (20,b) ~x—vy (yo,¢) iff zgUyo €C(X) orb~xc
iffzgUy € C(X)=>b~xc

X — 'Y is the coherent space of (traces of) stable functions. In particular given f € C(X — Y') then Fun f
is the stable function defined by:

Fun f(z) = {a s.t. there is an ¢ Cgn z, (z9,a) € f}

Linear maps

A stable function is linear if it commutes to any unions and not only directed ones.
Lemma 2 F: X =Y is linear iff it is stable and for any (x¢,b) € Tr F, z¢ is a singleton
The linear trace of a linear map F' is
Tn F = {(a,b) € [X| x |[Y],b € F({a})}
X — Y is the space of linear traces defined by:
o |X = V|=[X]x[Y];

L] (a, b) X oY (a',b’) iff a ~—~X a orb ~y b'.



The decomposition of the intuitionistic arrow
Let !X be the coherent space defined by:

o |IX| = Can(X);

e 1o =, Yo iff zo Uyo € C(X).

Then we have:

X->Y=IX—-Y

Linear connectives: multiplicatives
Linear negation: |X*|=|X|, a < biffa=bor~a<, b

tensor: | X QY| =|X|x|Y];

(a,b) oy (@',b) iffa =, a' and b=y Vs
par: [X BY| = |X|x|Y];

(a, b) NXBY (a’,b’) iff a X a’ orb ~Yy bl;
linear implication: X - Y = X1+ %Y.

one and bottom: |1| = |L| = {x};

Linear connectives: additives
with: | X;&Xs| = | X1 | + | Xa2|;
=y oy, Vit abE | X, a<, bfori=1or2
orac€ |X;|,be|X;|,i#7.
X&Y is the cartesian product of X; and X» (w.r.t stable and linear functions).

plllS: |X1 @X2| = |X1| + |X2|,
a=y oy, biffabe | X5, a <y, bfori=1or2
X @ X, is the direct sum of X and Y w.r.t. linear functions;

top and zero: |T| = 0| = 0.

Exponential connectives
Of course: |IX| = Cgn(X);
To =,y Yo iff zo Uyo € C(X);

Why not: ?X = (IX1)!, in particular |?X| = {finite anticliques of X }.



Isomorphisms

commutativity and associativity isos.

Neutrals
X®1~X, X®%1~X, X&T~X, Xp0~X

de Morgan laws
(XH)t=X
(XeY) =Xty (X&V)'=Xtevi (X)t=12xt
Yt Xt~ X oY
Distributivity: X @ (Y @ Z) ~ (X QY)® (X ®Z) X®0~0

The exponential iso: (X&Y) ~1X QY IT=1

Important maps

projections: 7; : X1& X2 — X;;

pairing: (F1,F2) : X - Y1&Y; given F; : X — Y};
tensoring: F1 @ F5 : X; ® Xy — Y; ® Y5 given F;; : X; — Yj;

Exponential maps

functorial promotion: given F': X — Y, we define !F' : 1 X — Y by:

T lF = {({al,...,an},{bl,...,bn}), s.t. {al,...,an} € C(X)
and (a;, b;) € Try F for all i}

weakening: wx :1X — 1: Triwx = {(0,%)};

dereliction: dx : !X — X: Tridx = {({a},a), a € | X|};

contraction: cx : !X — I X®!X: Triex = {(z1 U za, (21, 22)), s.t. 21,22 € Can(X)};
digging: digy : 1X — I1X:

Trdigy = {(z,{z1,-..,2n}), st. 2=z, U--- Uz,
and z,21,...,Z, € Can(X)}.



Syntax of LL

Sequent calculus

Formulas are considered up to de Morgan laws. Sequents are sequence of (occurrences of) formulas considerer
up to permutation: - Ay, ... Ay,.

FALT  FAA

Id: 1
FAL A FT.A cut
Mt FAB,T FT FAT +FBA
' FAX BT F LT FA®B,T,A F1
AT BT FA;, T
Add: ) ) S I L P
FA&B,T FT,T F A @ Ay, T
Exb: AT
P F7A, T 9t
LT 24 24T - A,7T
TIAT weak —oAT cont F1A 7T prom

Coherent semantics

Use the distinguished maps and isos to interpret LL proofs.
The category of coherent space and linear maps is a linear category:

e *_autonomous;
e monoidal comonad !, with in particular a natural transformation my,p : !1A® !B — (A ® B).

The CCC of stable maps is the co-Kleisli of the category of linear maps.
Important note: other comonads satisfying these conditions may be defined, typically the multiset-!
(free comonoid).

LL subsystems and fragments

ILL: Intuitionistic Linear Logic; obtained by reformulating with two sided sequents and constraining se-
quents to contain at most one formula on the right;

MLL: Multiplicative Linear Logic: formulas are constrained to contain only multiplicative connectives;
MALL: Multiplicative-Additive LL, the “linear” fragment of Linear Logic;
MELL: Multiplicative-Exponential LL;
the intuitionistic variants: IMLL, IMALL, IMELL;
NL: Non commutative Linear Logic;
ELL, LLL: Elementary and Light linear logic;
LL,,, LLP: Polarized linear logic.



Proof-nets: the natural deduction for MLL

An MLL proof-structure is a dag; nodes (also called links) are labelled by one of: ax, cut, concl, ®, %; edges
are labelled (or typed) by MLL formulas; the following typing conditions are further required:

e each concl node has exactly one premisse (entering edge) and no conclusion (exiting edge); the types
of the premisses of all concl links are the conclusions of the overall proof-structure. In drawings concl
links are often omitted, leaving their premisses as pending edges.

e each ax link has no premisse and two conclusions typed by dual formulas;

e each cut link has two premisses typed by dual formulas and no conclusions;

e each ® (resp. %) link has two premisses typed by A and B and one conclusion typed by A ® B (resp.
A% B).

Translation of sequent calculus

A proof of an MLL sequent - A;,..., A, is translated as a proof-structure with conclusions A4i,..., A, as
follows:
HA AL ~ .A{{::}1A+

T 2

FT,A  FALA
FT,A

s

F A, B,T
FA% B,T

1 2

FT,A FBA
FT,A® B, A

Proof-net

A proof-net is a proof-structure obtained by translating a sequent calculus proof.
There is an intrinsic caracterization of proof-nets called the correctness condition.

An incorrect proof-structure:



Cut elimination

A B Af Bt
Oaiin®
A®BL_ fout} ] A* 3 Bt 4@
AN

Exponential links

Add three new types of node:

dereliction: labelled with d: one premisse typed by A, one conclusion typed by ?A4;

weakening: labelled with w: no premisse, one conclusion labelled with 7 A;

contraction: labelled with ¢: two premisses both typed by 7A, one conclusion typed by 7A;

promotion: also called box, no premisse, one conclusion with type !4 and additionnaly, any number of
conclusions with type of the form ?B.

MELL proof-structures

A MELL proof-structure is a proof-structure containing the nodes described so far together with: for each
box link of conclusions ?T",!A, an associated proof-structure with conclusions 7T, A.
Boxes are drawn by putting their associated proof-structure inside a frame:

Translation of exponential rules

FT,A T
FT,74
74



_kr r
FT,74
74

FT,74,7A r| 24 24
FT,74

F T, A
F T, 14

Exponential cut elimination




?AL

7A+

74+

Translation of typed lambda-calculus:
Girard’s translation (CBN)

e Formula translation: X* = X (A— B)* =14* — B*
e Term translation:

1A,z At A > s
I—?(A’{)L,...,?(A;)L,A*



L *
z:AkFz:A ~ M
F24*t, A

Sut
For*t 74*L B*
b=t 74*L % B*

TFXx?wP:A> B ~

THudEp4 . B

L d
Dot
Foor=t, A
Dt Fereti4r B B
Foret 24t § B F Tt 14* @ B**, B* .
b=t 20+t B* Cu
n contr
F?T*—, B*
The CBYV translation
Formula translation:
X*=1X
(A— B)" =l(A* — B*)
Term translation:
F |— t: A Ay :
- I‘*J‘, A*

Pure lambda-calculus

Let D be a recursive type defined by: D = D — D; then any term is typable with type D (all free variables
typed with D). Add to MELL a corresponding type O (for Output):

0=10—-0=7I%0
where I = O, thus satisfies:
I=10®I

Then use the translation of typed lambda-calculus, adding D* = 0.
The same kind of trick may be used to translate CBV lambda-calculus.
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An example: delta delta

(Az.2122) AY-Y1Yy2 ~

Polarized linear logic

Back to coherent semantics

A positive correlation space is a coherent space P together with:
e an anticlique 1p;
e 3 linear map cp: P — P ® P;
satisfying the following conditions (we denote a —p b + ¢ for (a, (b,c)) € ¢cp) :
neutral: a —p a+n for any a € |P| and n € 1p;
commutativity: a »>p b+ ciff a = ¢+ b;

associativity: if a -p b+ c and ¢ —+p d + e then there is an f such that a »p f +eand f -p b+ d

Categorically speaking

Positive correlation spaces are commutative ®-comonoids in the category of coherent spaces and linear maps,
that is, objects P together with maps 1p: P — 1 and ¢p : P —o P ® P satisfying;:

P-*.PopP - Po1 "+ P=Idp

twist

P2 peP X peP=P-%- PP

p_* - P@P
cp cp® P
P®c
P®P L PR(PRP)~(PRP)®P
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Constructions of PCS
e 0,1 are PCS;
e if X is any coherent space then !X is a PCS (but not the free one, take the multiset oc for that);
e if P, () are PCSs then P® () and P ® () are PCSs;

Any PCS P is a !-coalgebra: there is a map: coalgp : P —o !P satisfying appropriate conditions w.r.t.
the comonad structure of !.

A negative correlation space is the dual of a positive correlation space. Categorically speaking, a NCS is
a commutative %¥-monoid, also a 7-algebra. Logically speaking, NCSs correspond to reversible connectives.

Polarized formulas

N w= X | L | NN | T | N&kN | ?P [ | ?N ]
P := Xt | 1 | PP | 0 | PoP | IN [ | P ]

Remark. The image of the CBN translation of intuitionistic logic is polarized. In particular intuitionistic
formulas are associated with negative formulas.
Polarized systems
LL,o: LL restricted to (strongly) polarized formulas;
LLP: LL,, + relaxed structural rules::
FT FN,N,T FN,N

- - prom
FN,D Veak N vy v

where N is any negative formula (not necessarily a ?-formula) and N is a context made only of negative
formulas.

Remark: at most one positive formula may appear in a provable polarized sequent (assuming the
appropriate slight modification of the T-rule).

Translation of A\y-calculus (CBN)
e Same formula translation as in the intuitionistic case!
e Term translation:
1A,y Akt Ciay i By,...,0u By
L d
Dt
l_ ?(AI)J_7 ) ?(A:L)J_7 0*7 Bf’ R B:ﬂ

Remark: only negative formulas appear in the conclusion sequent.

Variable, application and abstraction are translated as in the intuitionistic case, p-abstraction and
naming do nothing!

12



Example: Pierce law (call/cc)

AfAZB=A a4 ] (fAz pBPalz) : (A — B) - A) —»

~>

,_A*L’A*
F?A*E B* A*
F?4* % B, A*
prom
F1(?A*- & B*), A* F AL A
F1(?4* 3 B*) @ A*+, A*, A*
F2(1(?4*- % B*) @ A*1), A%, A*
FI(?A*- B B*) @ A**, A*
F2(1(?4*- ¥ B*) @ A*+) B A*

weak

contr

That’s all folks

But there are lots we haven’t seen:

e Linear Logic programming language and automatic proving issues (e.g.

complete);

Semantics: hypercoherences, finiteness spaces, ...

Geometry of Interaction, sharing reductions, abstract machines;
e (Games semantics, dynamic models;

¢ Non commutative logic;
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