TD 2- Séries à termes réels

Exercice 1 ([1], exercice II-2 et II-5, [7], exercice 5.2.1)

Soient $a,b\in\mathbb{R}$. Pour chacune des séries suivantes, déterminer si elle est convergente ou divergente:

$$u_n = (-1)^n \sin \frac{1}{n^2}, \ u_n = (-1)^n \sin \frac{1}{n}, \ u_n = \left(\frac{n}{n+1}\right)^{n^2}, \ u_n = \sin \left(\left(1 + \frac{1}{n}\right)^n\right) - a - \frac{b}{n},$$

$$u_n = \frac{1}{n^a} \int_0^n \frac{\arctan t}{1+t} dt, \ u_n = \frac{(-1)^n}{n+(-1)^{n+1}}.$$

Exercice 2 ([7], exercice 5.1.4)

Soit $\alpha \in \mathbb{R}$. Etudier la série $u_n = \frac{1}{\sum_{k=1}^n k^{\alpha}}$.

Exercice 3 ([7], exercice 5.1.6)

Pour tout $n \in \mathbb{N}$, on pose $u_n = \int_0^1 t^n \sin(\pi t) dt$.

(i) Trouver une relation entre u_{n+2} et u_n , et en déduire que la série $\sum u_n$ converge.

(ii) Montrer que
$$\sum_{n=0}^{\infty} u_n = \int_0^{\pi} \frac{\sin u}{u} du$$
.

Exercice 4 ([7], exercice 5.2.4)

Soit a > 1 et $f : [0, a] \to \mathbb{R}$ une fonction de classe C^2 . Etudier la série $u_n = \sum_{k=1}^n \frac{k}{n^2} f\left(\frac{k}{n^2}\right)$.

Exercice 5 ([1], exercices II-9, II-10 et II-20, [7], exercice 5.2.7) Règle d'Abel

(i) Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ des suites de réels. On suppose que les trois conditions suivantes sont vérifiées:

$$\exists M \ge 0 \ \forall n \in \mathbb{N} \ \left| \sum_{k=0}^{n} a_k \right| \le M,$$
$$b_n \to 0,$$
$$\sum_{n \in \mathbb{N}} |b_n - b_{n+1}| < +\infty.$$

Montrer que la série $\sum_{n\in\mathbb{N}} a_n b_n$ converge.

(ii) Soit $\alpha > 0$. Déterminer la nature des séries suivantes:

$$u_n = \frac{\cos n}{n+1}, \ u_n = \sin n \sin \left(\frac{1}{n+1}\right), \ u_n = \frac{(-1)^n}{n^{\alpha} + \cos n},$$

 $u_n = \sin(\pi e n!), \ u_n = \sin(2\pi e n!).$

Pour les deux dernières séries, on pourra utiliser la formule de Taylor-Lagrange appliquée à la fonction exponentielle entre 0 et 1.

Exercice 6 ([1], exercice II-21, [8], exercice 1.1.13)

Montrer que la série $u_n = \frac{\sin(\ln n)}{n}$ diverge, en prouvant qu'elle ne vérifie pas le critère de Cauchy.

Exercice 7 ([1], exercice II-27, [6], section 1.5.2, voir aussi [4], p. 99) Séries commutativement convergentes

(i) Soit $(u_n)_{n\geq 0}$ une suite de réels qui tend vers 0. Pour tout $n\in\mathbb{N}$, on pose $a_n=\sup(u_n,0)$ et $b_n=\sup(-u_n,0)$ et on suppose que les séries $\sum_{n\in\mathbb{N}}a_n$ et $\sum_{n\in\mathbb{N}}b_n$ divergent. Montrer que, pour tout $S\in\mathbb{R}$, il existe une bijection $\varphi:\mathbb{N}\to\mathbb{N}$ telle que $\sum_{n\in\mathbb{N}}u_{\varphi(n)}=S$. On pourra

pour tout $S \in \mathbb{R}$, il existe une bijection $\varphi : \mathbb{N} \to \mathbb{N}$ telle que $\sum_{n=0}^{\infty} u_{\varphi(n)} = S$. On pourra poser $\varphi(0) = 0$ et, si on a construit $\varphi(0), ..., \varphi(n)$,

$$\varphi(n+1) = \inf \{ k \notin \{ \varphi(0), ..., \varphi(n) \} ; \ u_k \ge 0 \} \text{ si } \sum_{k=0}^n u_{\varphi(k)} < S,$$
$$\varphi(n+1) = \inf \{ k \notin \{ \varphi(0), ..., \varphi(n) \} ; \ u_k \le 0 \} \text{ si } \sum_{k=0}^n u_{\varphi(k)} \ge S.$$

Vérifier que ce résultat reste valable si $S=\pm\infty$.

- (ii) Soit $(v_n)_{n\in\mathbb{N}}$ une suite de réels. Montrer que $\sum_{n\in\mathbb{N}} |v_n|$ converge si, et seulement si, pour toute bijection $\varphi: \mathbb{N} \to \mathbb{N}$, la série $\sum_{n\in\mathbb{N}} v_{\varphi(n)}$ converge.
- (iii) Soit $(v_n)_{n\in\mathbb{N}}$ une suite de réels telle que $\sum_{n\in\mathbb{N}} |v_n|$ converge. Montrer qu'il existe $S\in\mathbb{R}$ tel que, pour toute bijection $\varphi:\mathbb{N}\to\mathbb{N},$ $\sum_{n\in\mathbb{N}} v_{\varphi(n)}=S.$

Exercice 8 ([6], section 1.4 et exercice 1.40, [4], p. 101) Produit de séries

(i) Soient $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ des suites à valeurs dans $[0,+\infty[$. On suppose que $\sum_{n\geq 0}u_n=U\in\mathbb{R}$ et $\sum_{n\geq 0}v_n=V\in\mathbb{R}$. Pour tout $n\in\mathbb{N}$, on définit

$$w_n = \sum_{k=0}^n u_k v_{n-k}.$$

Montrer que $\sum_{n\in\mathbb{N}} w_n = UV$ (on posera $W_n = \sum_{k=0}^n w_k$ et on comparera W_n, U_nV_n et W_{2n} pour tout $n\in\mathbb{N}$).

- (ii) On suppose maintenant que $u_n, v_n \in \mathbb{R}$ et que les séries $\sum_{n \in \mathbb{N}} u_n$ et $\sum_{n \in \mathbb{N}} v_n$ convergent absolument. Montrer que la conclusion de la question (i) reste valable.
- (iii) On suppose maintenant que $u_n, v_n \in \mathbb{R}$, que la série $\sum_{n \in \mathbb{N}} u_n$ converge et que la série $\sum_{n \in \mathbb{N}} v_n$ converge absolument. Montrer que la conclusion de la question (i) reste valable (théorème de Mertens).
- (iv) Que se passe-t-il si on suppose seulement que les séries $\sum_{n\in\mathbb{N}}u_n$ et $\sum_{n\in\mathbb{N}}v_n$ convergent ?

Exercice 9 ([6], section 1.9) Produits infinis

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels non nuls. Pour tout $n\in\mathbb{N}$, on pose $P_n=\prod_{k=0}^n u_k$. On dit que le produit infini $\prod_{n=0}^\infty u_n$ converge si, et seulement si, la suite $(P_n)_{n\in\mathbb{N}}$ converge vers un réel $P\neq 0$. On pose alors $\prod_{n=0}^\infty u_n=P$.

- (i) On suppose que la produit infini $\prod u_n$ converge. Montrer que $u_n \to 1$.
- (ii) Pour tout $n \in \mathbb{N}$, on pose $v_n = u_n 1$. Montrer que, si le produit infini $\prod (1 + |v_n|)$ converge, alors le produit infini $\prod (1 + v_n)$ converge (utiliser la question précédente et la fonction logarithme).
- (iii) Quelle est la nature du produit $\prod_{n\geq 2} \left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$?

Exercice 10 ([6], chapitre 1, exercice 1.42)

Soit $t \in \mathbb{R} \setminus \pi \mathbb{Z}$.

- (i) Montrer que le produit infini $\prod_{n\geq 1} \left(1 \frac{t^2}{\pi^2 n^2}\right)$ converge.
- (ii) Soit $p\in\mathbb{N}$ et n=2p+1. Vérifier que

$$\sin(nt) = n \sin t \prod_{k=1}^{p} \left(1 - \frac{\sin^2 t}{\sin^2 \frac{k\pi}{n}} \right),$$

$$\sin(nt) = n \cos^n t \tan t \prod_{k=1}^{p} \left(1 - \frac{\tan^2 t}{\tan^2 \frac{k\pi}{n}} \right).$$

(iii) Soit $0 < x < y < \frac{\pi}{2}$. Montrer que

$$\frac{\sin x}{\sin y} > \frac{x}{y} \text{ et } \frac{\tan x}{\tan y} < \frac{x}{y}.$$

(iv) En déduire que

$$t\prod_{n\geq 1} \left(1 - \frac{t^2}{\pi^2 n^2}\right) = \sin t.$$

Exercice 11 ([8], exercice 1.1.8, [1], exercice II-34)

- (i) Montrer que l'ensemble \mathbb{P} des nombres premiers est une partie infinie de \mathbb{N} , et en déduire qu'il existe une bijection $n \mapsto p_n$ strictement croissante de \mathbb{N} sur \mathbb{P} .
- (ii) Vérifier que, pour tout $n \in \mathbb{N}$, $p_n \ge n+2$. En déduire que, pour tout $\alpha > 1$, le produit infini $\prod_{n \in \mathbb{N}} \left(1 \frac{1}{p_n^{\alpha}}\right)$ converge.
- (iii) Montrer que, pour tout $\alpha > 1$,

$$\prod_{n\in\mathbb{N}} \left(1 - \frac{1}{p_n^{\alpha}}\right) = \left(\sum_{n\geq 1} \frac{1}{n^{\alpha}}\right)^{-1}.$$

(iv) Montrer que le produit infini $\prod_{n\in\mathbb{N}}\left(1-\frac{1}{p_n}\right)$ diverge, en déduire la nature de la série $\sum_{n\in\mathbb{N}}\frac{1}{p_n}.$

Exercice 12 ([3], p. 324) Lemme de Cotlar

Soit $\varepsilon \in (0,1)$.

(i) Soit $(u_n)_{n\geq 1}$ une suite de réels tels que $0\leq u_n\leq 1$ pour tout $n\geq 1$. On suppose que, pour tous $i,j\geq 1,\ u_iu_j\leq \varepsilon^{|i-j|}$. Montrer que

$$\sum_{i=1}^{+\infty} u_i \le \frac{1}{1 - \sqrt{\varepsilon}}.$$

(ii) Soit E un espace de Hilbert séparable, $n \geq 1$ et $H_1, ..., H_n$ des applications linéaires continues auto-adjointes de E dans E, telles que $H_iH_j = H_jH_i$ pour tous $1 \leq i, j \leq n$, et vérifiant

$$||H_i|| \le 1$$
 et $||H_iH_j|| \le \varepsilon^{|i-j|}$

pour tous $1 \le i, j \le n$. Montrer que

$$\left\| \sum_{i=1}^n H_i \right\| \le \frac{1}{1 - \sqrt{\varepsilon}}.$$

Exercice 13 ([5], p. 131, [2], p. 199)

Montrer que

$$\int_0^{+\infty} x e^{-x^{\alpha} \sin^2 x} dx < +\infty \text{ si, et seulement si, } \alpha > 4.$$

Exercice 14 ([8], exercice 1.1.14)

Soit $\alpha \in \mathbb{R}$. Etudier la convergence de la série $\frac{(-1)^{E(\sqrt{n})}}{n^{\alpha}}$, où E(x) est la partie entière de x pour tout $x \in \mathbb{R}$.

References

- [1] M. Andler, J. D. Bloch, B. Mailliard, *Exercices corrigés de mathématiques*, Analyse II, Suites et séries numériques, Ellipses.
- [2] M. Andler, J. D. Bloch, B. Mailliard, *Exercices corrigés de mathématiques*, Analyse III, Ellipses.
- [3] J. Dieudonné, Eléments d'analyse, t.2, Gauthier-Villars.
- [4] B. Hauchecorne, Les contre-exemples en mathématiques, Ellipses.

- [5] E. Leichtnam, Exercices corrigés de mathématiques posés à l'oral des concours de Poytechnique et des ENS, tome 3, Ellipses.
- [6] E. Ramis, C. Deschamps, J. Odoux, *Cours de mathématiques spéciales*, Vol 4, Séries et équations différentielles, Masson.
- [7] E. Ramis, C. Deschamps, J. Odoux, Analyse 1., Exercices avec solutions, Masson.
- [8] E. Ramis, C. Deschamps, J. Odoux, Analyse 2., Exercices avec solutions, Masson.