Université de Provence 2012–2013

Introduction à l'Analyse

Chapitre 3 - Logique et Suites.

1 Notions de logique mathématique.

1.1 Assertions, propositions logiques, tables de vérité.

On rappelle la notion intuitive d'assertion ou de proposition logique : c'est un énoncé qui ne peut être que vrai ou faux. C'est ce qu'exprime une table de vérité de la proposition :

A	proposition logique
1	cas où elle est vraie
0	cas où elle est fausse

1.2 Négation d'une assertion.

La négation d'une proposition, notée non A, est la proposition vraie quand A est fausse et fausse quand A est vraie. Elle est définie par la table de vérité suivante :

A	non A
1	0
0	1

A l'aide de deux assertions A et B, on peut en créer d'autres en utilisant des connecteurs logiques : non, et, ou, \Longrightarrow (implique), \Longleftrightarrow (équivaut).

1.3 "et" et "ou".

Les tables de vérité de "et" et "ou" sont les suivantes :

A	В	A et B	A ou B
1	1	1	1
1	0	0	1
0	1	0	1
0	0	0	0

1.4 L'implication.

Soient A et B deux assertions. On dit que $A \Longrightarrow B$ est une assertion vraie lorsque dès que A est vraie, B est vraie (elle sera aussi toujours vraie si A est fausse, quelle que soit la véracité de B).

La table de vérité de $A \Longrightarrow B$ est donc la suivante :

A	В	$A \Longrightarrow B$
1	1	1
1	0	0
0	1	1
0	0	1

En pratique, on fait l'abus de notation suivant : quand on écrit une implication $A \Longrightarrow B$ sans dire si elle est vraie ou non, on sous-entend toujours qu'elle est vraie.

On dit que B est une condition nécessaire pour avoir A et que A est une condition suffisante pour avoir B lorsque $A \Longrightarrow B$ est vraie.

 $B \Longrightarrow A$ est l'implication réciproque de $A \Longrightarrow B$.

 $(\text{non } B) \Longrightarrow (\text{non } A)$ est la contraposée de l'implication $A \Longrightarrow B$.

On a vu en exercice que la contraposée d'une implication est une assertion égale à l'implication initiale.

Et il est quelquefois plus pratique, quand on veut démontrer une implication, de montrer sa contraposée.

1.5 L'équivalence.

Soient A et B deux assertions. On dit que $A \iff B$ est une assertion vraie si et seulement si $[(A \implies B)]$ et $(B \implies A)$] est une assertion vraie. Autrement dit, $A \iff B$ est vraie si et seulement si A et B sont soit simultanément vraies, soit simultanément fausses. D'où la table de vérité :

A	В	$A \Longleftrightarrow B$
1	1	1
1	0	0
0	1	0
0	0	1

1.6 Quantificateurs

Pour écrire des mathématiques, on utilise souvent les quantificateurs combinés avec les connecteurs logiques "et", "ou", \Rightarrow , \Leftrightarrow :

- ∀ (lu : "quel que soit" ... ou bien "pour tout" ...)
- ∃ (lu : "Il existe ...")
- ∃! (lu : "il existe un unique ...").

Par exemple, si on veut exprimer que tout entier naturel est soit pair ou impair, on écrit :

$$\forall n \in \mathbb{N}, \quad (\exists k \in \mathbb{N}, \quad n = 2k) \quad \text{ou} \quad (\exists k' \in \mathbb{N}, \quad n = 2k' + 1).$$

Si on veut exprimer l'identité remarquable $(a+b)^2 = a^2 + 2ab + b^2$, on écrit

$$\forall a \in \mathbb{R}, \quad \forall b \in \mathbb{R}, \quad (a+b)^2 = a^2 + 2ab + b^2.$$

De même,

$$(\forall x \in \mathbb{R}, \quad ax + b = 0) \Leftrightarrow (a = b = 0)$$

et

$$(\exists x \in \mathbb{R}, \quad ax + b = 0) \Leftrightarrow (a \neq 0 \text{ ou } a = b = 0)$$

L'ordre des quantificateurs n'est pas important quand ils sont identiques, mais a de l'importance quand ils sont différents.

Quelques exemples:

$$(\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, y-x>0) \Leftrightarrow (\exists y \in \mathbb{R}, \exists x \in \mathbb{R}, y-x>0)$$

et ces deux assertions sont vraies.

$$(\forall x \in \mathbb{R}, \quad \forall y \in \mathbb{R}, \quad y - x > 0) \Leftrightarrow (\forall y \in \mathbb{R}, \quad \forall x \in \mathbb{R}, \quad y - x > 0)$$

et ces deux assertions sont fausses. Par contre les assertions

$$\exists x \in \mathbb{R}, \quad \forall y \in \mathbb{R}, \qquad y - x > 0$$

$$\forall y \in \mathbb{R}, \quad \exists x \in \mathbb{R}, \qquad y - x > 0$$

sont différentes. En effet la première est fausse alors que la seconde est vraie.

1.7 Négation.

On rappelle la définition de la négation d'une assertion A: c'est l'assertion (non A) qui est vraie quand A est fausse, et fausse quand A est vraie.

Les règles pour prendre les négations des assertions sont très simples :

- \forall devient \exists ; par exemple, si P(x) est une assertion dont la véracité dépend de la variable x, on a :

non
$$(\forall x \in \cdots, P(x)) = (\exists x \in \cdots, \text{non } P(x)).$$

- \exists devient \forall ; par exemple, si P(x) est une assertion dont la véracité dépend de la variable x, on a :

non
$$(\exists x \in \cdots, P(x)) = (\forall x \in \cdots, \text{non } P(x)).$$

- non (A ou B) = (non A) et (non B) (le "ou" devient "et");
- non (A et B) = (non A) ou (non B) (le "et" devient "ou");
- non $(A \Rightarrow B) = A$ et (non B).

Par exemple, si on écrit que tout entier est pair (ce qui est faux) :

$$\forall n \in \mathbb{N}, \quad \exists k \in \mathbb{N}, \quad n = 2k,$$

la négation de cette assertion est donc vraie, ce qui nous donne :

$$\exists n \in \mathbb{N}, \quad \forall k \in \mathbb{N}, \quad n \neq 2k.$$

La négation de l'assertion (vraie):

$$\forall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n = 2k) \text{ ou } (\exists k' \in \mathbb{N}, n = 2k + 1)$$

est

$$\exists n \in \mathbb{N}, (\forall k \in \mathbb{N}, n \neq 2k) \text{ et } (\forall k' \in \mathbb{N}, n \neq 2k+1)$$

qui est donc fausse car la première est vraie.

Par contre, il n'existe pas de règle simple pour prendre la négation de $\exists !$: il faut nier "existence et unicité" donc "nier l'existence" ou "nier l'unicité".

2 Plus grand élément. Borne supérieure.

2.1 Majorant. Minorant.

Définition. Soit A une partie de \mathbb{R} . On dit que $M \in \mathbb{R}$ est majorant de A si et seulement si

$$\forall x \in A, \qquad x \leq M$$

Si la partie A possède au moins un majorant, on dit que A est majorée.

On dit que $m \in \mathbb{R}$ est minorant de A si et seulement si

$$\forall x \in A, \qquad x > m$$

Si la partie A possède au moins un minorant, on dit que A est minorée.

Par exemple, \mathbb{Z} n'a ni minorant, ni majorant.

A = [1, 2[est minorée. L'ensemble des minorants de A est $]-\infty, 1]$, tandis que l'ensemble des majorants de A est $[2, +\infty[$.

2.2 Plus grand élément. Plus petit élément.

Définition. Soit A une partie de \mathbb{R} .

On dit que $M \in \mathbb{R}$ est un plus grand élément de A si et seulement si $M \in A$ et M est un majorant de A.

On dit que $m \in \mathbb{R}$ est un plus petit élément de A si et seulement si $m \in A$ et m est un minorant de A.

Nous avons la proposition suivante :

Proposition. Soit A une partie de \mathbb{R} .

Si A possède un plus grand élément, celui-ci est unique.

Si A posséde un plus petit élément, celui-ci est unique.

Preuve. En effet, si M et M' sont deux plus grands éléments, alors $M \leq M'$ car $M \in A$ et M' est un majorant de A. De même, $M' \leq M$ car $M' \in A$ et M est un majorant de A. Nous avons donc M = M'.

Si A = [1, 2[alors A n'a pas de plus grand élément. En effet, les majorants de A sont tous dans $[2, +\infty[$, et aucun n'est donc dans A.

Par contre, si A = [1, 2], alors A a un plus grand élément qui est 2.

Définition. Soit A une partie de \mathbb{R} . Si A a un plus grand élément, on le note max A. De même, si A a un plus petit élément, on le note min A.

2.3 Borne supérieure. Borne inférieure.

Définition. Soit A une partie de \mathbb{R} .

On dit que $s \in \mathbb{R}$ est une borne supérieure de A si s est le plus petit élément de l'ensemble des majorants de A.

Comme le plus petit élément d'un ensemble, s'il existe, est unique, on en déduit que si A possède une borne supérieure, celle-ci est unique. On la note alors sup A.

De même, on dit que $i \in \mathbb{R}$ est une borne inférieure de A si i est le plus grand élément de l'ensemble des minorants de A.

Comme le plus grand élément d'un ensemble, s'il existe, est unique, on en déduit que si A possède une borne inférieure, celle-ci est unique. On la note alors inf A.

Si A = [1, 2], alors sup A = 2. De même, si A = [1, 2], alors sup A = 2.

Théorème. Soit A une partie de \mathbb{R} .

Si A possède un plus grand élément, alors A possède une borne supérieure et $\sup A = \max A$.

Si A possède un plus petit élément, alors A possède une borne inférieure et inf $A = \min A$.

Preuve. En effet, si $M = \max A$, il suffit de montrer que M est le plus petit élément des majorants de A.

Comme $M = \max A$, M est majorant de A. Il suffit donc de montrer que M est un minorant de l'ensemble des majorants de A pour pouvoir conclure.

Soit donc M' un majorant de A. Comme $M \in A$, nous avons donc $M \leq M'$, ce qui prouve bien que M est un minorant de l'ensemble des majorants de A.

La conclusion du premier point en découle.

Pour le second point, c'est totalement analogue.

2.4 Cas de \mathbb{R} .

L'une des propriétés fondamentales de $\mathbb R$ est la suivante :

Axiome. Toute partie non vide majorée de \mathbb{R} possède une borne supérieure.

Toute partie non vide minorée de \mathbb{R} possède une borne inférieure.

Nous avons aussi le théorème suivant, très important, appelé "Théorème de passage à la borne supérieure":

Théorème. Soit A une partie non vide de \mathbb{R} . Soit $M \in \mathbb{R}$ tel que : $\forall x \in A, x \leq M$. Alors $\sup A$ existe et $\sup A \leq M$.

Il y a bien entendu un énoncé tout à fait analogue pour la borne inférieure.

Preuve. La borne supérieure existe car A est non vide et majorée. Comme M est un majorant de A, on en déduit que sup A qui est le plus petit élément de l'ensemble des majorants vérifie sup $A \leq M$.

Attention toutefois au faux théorème de passage à la borne supérieure. L'énoncé suivant : " $\forall x \in A, x < M$ implique sup A < M" est un énoncé faux. Si par exemple A = [0,1[et M = 1, on a : $\forall x \in A, x < 1$ et pourtant sup A = 1. Il est donc très important dans le théorème de passage à la borne supérieure que les inégalités soient larges.

3 Suites convergentes

3.1 Définition.

Définition. Soit $(u_n)_n$ une suite de nombres réels et $\ell \in \mathbb{R}$. On dit que la suite $(u_n)_n$ converge vers ℓ et on note $\lim_{n \to +\infty} u_n = \ell$ ou encore $u_n \xrightarrow[n \to +\infty]{} \ell$ si et seulement si

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n \geq N \implies |u_n - \ell| \leq \varepsilon.$$

Nous avons plusieurs définitions alternatives pour la convergence vers ℓ :

Pour $\alpha > 0$ fixé,

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n \geq N \implies |u_n - \ell| \leq \alpha \varepsilon$$

ou encore

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \ge N, \quad |u_n - \ell| \le \varepsilon,$$

ou encore

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n \ge N \implies |u_n - \ell| < \varepsilon,$$

ou encore

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n \geq N \implies \ell - \varepsilon \leq u_n \leq \ell + \varepsilon.$$

3.2 Suites majorées et minorées.

Définition. Soit $(u_n)_n$ une suite de nombres réels. On dit que :

 $-(u_n)$ est $major\acute{e}e$ si et seulement si

$$\exists M \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_n < M.$$

 $-(u_n)$ est minor'ee si et seulement si

$$\exists m \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_n \ge m$$

- $-(u_n)_n$ est bornée si et seulement si (u_n) est majorée et minorée.
- (u_n) converge vers $+\infty$ et on note $\lim_{n\to +\infty}u_n=+\infty$ ou encore $u_n\underset{n\to +\infty}{\longrightarrow}+\infty$ si et seulement si

$$\forall A \in \mathbb{R}, \quad \exists N \in \mathbb{N}, \quad \forall n \ge N, \quad u_n \ge A.$$

 $-(u_n)$ converge vers $-\infty$ et on note $\lim_{n\to+\infty}u_n=-\infty$ ou encore $u_n\underset{n\to+\infty}{\longrightarrow}-\infty$ si et seulement si

$$\forall A \in \mathbb{R}, \quad \exists N \in \mathbb{N}, \quad \forall n \ge N, \quad u_n \le A.$$

Proposition. Une suite qui converge vers $+\infty$ n'est pas bornée.

Preuve. En effet, si la suite (u_n) est bornée, il existe $M \in \mathbb{N}$ tel que, pour tout $n \geq M$, on ait $u_n \leq M$.

Or, comme $(u_n)_n$ tend vers $+\infty$, il existe $N \in \mathbb{N}$ tel que, pour tout $n \geq N$, on ait $u_n \geq M+1$. On a alors : $\forall n \geq N$, $M+1 \leq u_n \leq M$, ce qui est absurde.

Remarque. Par contre il existe des suites non bornées qui ne tendent pas vers $+\infty$. La suite $((-1)^n n)_n$ par exemple, ou alors la suite qui vaut n si n est pair et 1 si n est impair.

3.3 Unicité de la limite.

Théorème. Soit $(u_n)_n$ une suite de nombres réels. Si $(u_n)_n$ converge, sa limite est unique.

Preuve. En effet, supposons que la suite $(u_n)_n$ ait deux limites ℓ et ℓ' avec $\ell \neq \ell'$. Supposons par exemple que $\ell < \ell'$ et soit $\varepsilon > 0$ tel que $\varepsilon < \frac{1}{2}(\ell' - \ell)$.

Nous avons alors $\ell + \varepsilon < \ell' - \varepsilon$.

La suite $(u_n)_n$ convergeant vers ℓ , il existe un rang $N_1 \in \mathbb{N}$ tel que, pour tout $n \geq N_1$, on ait $\ell - \varepsilon \leq u_n \leq \ell + \varepsilon$.

La suite $(u_n)_n$ convergeant vers ℓ' , il existe un rang $N_2 \in \mathbb{N}$ tel que, pour tout $n \geq N_2$, on ait $\ell' - \varepsilon \leq u_n \leq \ell' + \varepsilon$.

En particulier, pour tout $n \ge \max(N_1, N_2)$, on a $u_n \le \ell + \varepsilon < \ell' - \varepsilon \le u_n$. C'est absurde. Ceci prouve bien que nécessairement, $\ell = \ell'$, et donc que la limite est unique.

3.4 Suites complexes.

Définition. Soit $(u_n)_n$ une suite de nombres complexes. On dit que $(u_n)_n$ converge vers $\ell \in \mathbb{C}$ si et seulement si les suites $(\operatorname{Re} u_n)_n$ et $(\operatorname{Im} u_n)_n$ convergent respectivement vers $\operatorname{Re} \ell$ et $\operatorname{Im} \ell$.

Nous avons le théorème suivant :

Théorème. Une suite $(u_n)_n$ de nombres complexes converge vers $\ell \in \mathbb{C}$ si et seulement si la suite $(|u_n - \ell|)_n$ converge vers 0, soit si et seulement si

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n \geq N \implies |u_n - \ell| \leq \varepsilon.$$

Preuve. En effet, si

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n \ge N \implies |u_n - \ell| \le \varepsilon,$$

alors

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n \ge N \implies |\operatorname{Re} u_n - \operatorname{Re} \ell| \le |u_n - \ell| \le \varepsilon$$

 et

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n \ge N \implies |\operatorname{Im} u_n - \operatorname{Im} \ell| \le |u_n - \ell| \le \varepsilon$$

ce qui prouve que (Re u_n)_n converge vers Re ℓ et (Im u_n)_n converge vers Im ℓ .

Réciproquement, si la suite (Re u_n)_n converge vers Re ℓ et (Im u_n)_n converge vers Im ℓ , alors

$$\forall \varepsilon > 0, \quad \exists N_1 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n \ge N \implies |\operatorname{Re} u_n - \operatorname{Re} \ell| \le \frac{\varepsilon}{\sqrt{2}}$$

et

$$\forall \varepsilon > 0, \quad \exists N_2 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n \ge N \implies |\operatorname{Im} u_n - \operatorname{Im} \ell| \le \frac{\varepsilon}{\sqrt{2}}$$

En particulier, pour tout $\varepsilon > 0$ et pour $N = \max(N_1, N_2)$, on a

$$\forall n \in \mathbb{N}, \qquad n \ge N \qquad \Longrightarrow \qquad |u_n - \ell| = \sqrt{|\mathrm{Re}\ u_n - \mathrm{Re}\ \ell|^2 + |\mathrm{Im}\ u_n - \mathrm{Im}\ \ell|^2} \le \sqrt{\left(\frac{\varepsilon}{\sqrt{2}}\right)^2 + \left(\frac{\varepsilon}{\sqrt{2}}\right)^2} = \varepsilon.$$

Ceci prouve bien que

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n \ge N \implies |u_n - \ell| \le \varepsilon$$

et termine la preuve du théorème.

Il découle de l'unicité des limites pour les suites réelles le fait que si une suite de complexes est convergente, alors la limite de celle-ci est unique.

3.5 Suites bornées.

Définition. Soit (u_n) une suite de nombres réels. On dit que (u_n) est bornée si et seulement si $(u_n)_n$ est minorée et majorée.

Proposition. Une suite $(u_n)_n$ de réels est bornée si et seulement si :

$$\exists M \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad |u_n| \le M.$$

Définition. Si $(u_n)_n$ est une suite de nombres complexes, on dit que (u_n) est bornée si et seulement si la suite $(|u_n|)_n$ est bornée, ce qui revient à dire que

$$\exists M > 0, \quad \forall n \in \mathbb{N}, \quad |u_n| < M.$$

Théorème. Soit $(u_n)_n$ une suite de nombres complexes. Si $(u_n)_n$ converge, alors elle est bornée.

Preuve. En effet, si ℓ est la limite de la suite $(u_n)_n$, et si $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que, pour tout $n \geq N$, on ait $|u_n - \ell| \leq \varepsilon$.

On a alors

$$\forall n \ge N, \qquad |u_n| = |u_n - \ell + \ell| \le |u_n - \ell| + |\ell| \le |\ell| + \varepsilon.$$

Posons $M = \max(|u_0|, |u_1|, \dots, |u_{N-1}|, |\ell| + \varepsilon)$. Nous avons alors :

$$\forall n \in N, \quad |u_n| \le M$$

ce qui prouve que $(u_n)_n$ est bornée.

Remarque. la réciproque est fausse : par exemple, la suite $((-1)^n)_n$ qui vaut alternativement 1 et -1 est bornée mais ne converge pas.

3.6 Suites extraites.

Définition. Soit $(u_n)_n$ et (v_n) deux suites de complexes. On dit que (v_n) est une suite extraite de $(u_n)_n$ si et seulement si il existe $\varphi : \mathbb{N} \to \mathbb{N}$ une application <u>strictement croissante</u> telle que :

$$\forall n \in \mathbb{N}, \quad v_n = u_{\varphi(n)}.$$

Théorème. Soit $(u_n)_n$ une suite de nombres complexes et $\ell \in \mathbb{C}$. Alors la suite $(u_n)_n$ converge vers ℓ si et seulement si toutes les suites extraites de $(u_n)_n$ convergent vers ℓ .

Preuve. En effet, si toutes les suites extraites de (u_n) convergent vers ℓ et si $\varphi : \mathbb{N} \to \mathbb{N}$ est l'identité, c'est-à-dire que, pour tout $n \in \mathbb{N}$, $\varphi(n) = n$, alors $(u_{\varphi(n)})_n = (u_n)_n$ converge vers ℓ donc $(u_n)_n$ converge vers ℓ .

Réciproquement, si $(u_n)_n$ converge vers ℓ , montrons que toutes les suites extraites de $(u_n)_n$ convergent elles aussi vers ℓ .

On montre par récurrence sur $n \in \mathbb{N}$ que : $\forall n \in \mathbb{N}$, $\varphi(n) \ge n$. En effet, c'est vrai pour n = 0. Si c'est vrai au rang n, la stricte croissance de φ nous donne $\varphi(n+1) \ge \varphi(n) + 1 \ge n + 1$, donc c'est vrai au rang n + 1.

Soit donc $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que, pour tout $n \ge N$, on ait $|u_n - \ell| \le \varepsilon$. En particulier, pour tout $n \ge N$, comme $\varphi(n) \ge n \ge N$, on a $|u_{\varphi(n)} - \ell| \le \varepsilon$, et ceci prouve bien que :

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \ge N, \quad |u_{\varphi(n)} - \ell| \le \varepsilon,$$

et donc que $(u_{\varphi(n)})_n$ converge vers ℓ .

Application. La suite $((-1)^n)_n$ n'est pas convergente.

En effet, si elle l'était, la suite extraite $((-1)^{2n})_n = (1)_n$ converge vers la même limite ℓ que $((-1)^n)_n$, donc $\ell = 1$. De même, la suite $((-1)^{2n+1})_n = (-1)_n$ qui est constante et égale à -1 converge vers $\ell = -1$, donc $\ell = 1 = -1$. C'est absurde.

4 Opérations sur les suites.

On commence par prouver l'inégalité suivante, appelée seconde inégalité triangulaire :

11

Théorème. Pour tous $u, v \in \mathbb{C}$, on a

$$||u| - |v|| \le |u - v|.$$

Preuve. En effet, si $u, v \in \mathbb{C}$, la première inégalité triangulaire nous donne

$$|u| = |u - v + v| \le |u - v| + |v|,$$

donc

$$|u| - |v| \le |u - v|.$$

Echangeant les rôles de u et v, nous obtenons

$$|v| - |u| \le |v - u| = |u - v|$$

donc

$$||u| - |v|| = \max(|u| - |v|, |v| - |u|) \le |u - v|.$$

Théorème. Soient $(u_n)_n$ et $(v_n)_n$ deux suites de complexes qui convergent vers ℓ et ℓ' et soit $\lambda \in \mathbb{C}$. Alors la suite de terme général $(u_n + \lambda v_n)_n$ converge vers $\ell + \lambda \ell'$.

Preuve.

En effet, si $\varepsilon' > 0$, il existe un rang N_1 tel que, pour tout $n \geq N_1$, $|u_n - \ell| \leq \varepsilon'$.

Il existe un rang N_2 tel que, pour tout $n \geq N_2$, $|v_n - \ell'| \leq \varepsilon'$.

En particulier, pour tout $n \ge \max(N_1, N_2)$, on a

$$|(u_n + \lambda v_n) - (\ell + \lambda \ell')| = |(u_n - \ell) + \lambda (v_n - \ell')| \le |u_n - \ell| + |\lambda||v_n - \ell'| \le \varepsilon' + |\lambda|\varepsilon' = (1 + |\lambda|)\varepsilon'.$$

On a bien prouvé que,

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \geq N, \quad |(u_n + \lambda v_n) - (\ell + \lambda \ell')| \leq \varepsilon.$$

En effet, il suffit, pour $\varepsilon > 0$ donné, de prendre ε' tel que $(1 + |\lambda|)\varepsilon' \le \varepsilon$ pour avoir la conclusion désirée. \square

Théorème. Soient $(u_n)_n$ et $(v_n)_n$ deux suites de complexes qui convergent vers ℓ et ℓ' . Alors la suite de terme général $(u_nv_n)_n$ converge vers $\ell\ell'$.

Preuve. On va prouver le lemme suivant :

Lemme. Soient $(u_n)_n$ et $(v_n)_n$ deux suites de complexes telles que (u_n) soit bornée et $(v_n)_n$ tende vers 0. Alors $(u_nv_n)_n$ tend vers 0.

Preuve du lemme. En effet, si $\varepsilon' > 0$, il existe $N \in \mathbb{N}$ tel que, pour tout $n \geq N$, on ait $|v_n| \leq \varepsilon'$ et il existe M > 0 tel que, pour tout $n \in \mathbb{N}$, $|u_n| \leq M$.

En particulier, pour tout $n \geq N$, on a $|u_n v_n| \leq |u_n| |v_n| \leq M \varepsilon'$.

Si maintenant, on prend $\varepsilon > 0$ quelconque et si on prend $\varepsilon' > 0$ tel que $M\varepsilon' \le \varepsilon$, on voit que pour tout $n \ge N$ où N a été construit comme précedemment, on a $|u_n v_n| \le \varepsilon$. Ceci prouve bien que $(u_n v_n)_n$ converge vers 0 et prouve le lemme.

Revenons à la preuve du théorème. On écrit que, pour tout $n \in \mathbb{N}$,

$$u_n v_n - \ell \ell' = u_n (v_n - \ell') + u_n \ell' - \ell \ell' = u_n (v_n - \ell') + (u_n - \ell) \ell'.$$

La suite (u_n) converge, donc elle est bornée. D'après le lemme, la suite $(u_n(v_n-\ell'))_n$ converge vers 0.

Enfin, d'après le théorème précédent, la suite $((u_n - \ell)\ell')_n$ converge vers $0 \times \ell' = 0$.

On en déduit que la suite $(u_n v_n - \ell \ell')_n$ converge vers 0, ce qui prouve le théorème.

Théorème. Soit $(u_n)_n$ une suite de complexes qui converge vers $\ell \neq 0$. Alors

- Il existe $N \in \mathbb{N}$ tel que, pour tout $n \geq N$, on ait : $|u_n| \geq \frac{|\ell|}{2} > 0$.

- La suite $\left(\frac{1}{u_n}\right)_{n>N}$ converge vers $\frac{1}{\ell}$.

Preuve. En effet, si $\varepsilon = \frac{|\ell|}{2} > 0$, il existe $N \in \mathbb{N}$ tel que, pour tout $n \ge N$, on ait : $|u_n - \ell| \le \varepsilon$.

En particulier, pour tout $n \ge N$, grâce à la deuxième inégalité triangulaire, on a

$$|\ell| - |u_n| \le |\ell| - |u_n| \le |\ell - u_n| \le \varepsilon = \frac{|\ell|}{2},$$

donc $|u_n| \ge |\ell| - \frac{|\ell|}{2} = \frac{|\ell|}{2}$. Le premier point est prouvé.

En ce qui concerne le second point, on écrit que, pour $n \geq N$, on a $u_n \neq 0$. Donc, pour $n \geq N$, on a

$$\frac{1}{u_n} - \frac{1}{\ell} = \frac{\ell - u_n}{\ell u_n}.$$

La suite $(\ell - u_n)$ tend vers 0 et la suite $(\frac{1}{\ell u_n})_{n \geq N}$ est bornée. On en déduit que la suite $(\frac{1}{u_n} - \frac{1}{\ell})_{n \geq N}$ converge vers 0.

Proposition. Soit $(u_n)_n$ une suite de nombres complexes non nuls telle que $(|u_n|)_n$ converge vers $+\infty$. Alors $\left(\frac{1}{u_n}\right)_n$ converge vers θ .

Preuve. Soit $\varepsilon > 0$. Il existe un rang N tel que, pour tout $n \ge N$, on ait $|u_n| \ge \frac{1}{\varepsilon}$. On a alors :

$$\forall n \ge N, \qquad \left| \frac{1}{u_n} \right| \le \varepsilon.$$

5 Cas des suites réelles.

Théorème de passage à la limite. Soit $(u_n)_n$ une suite réelle, positive à partir d'un certain rang, et qui converge vers ℓ . Alors $\ell \geq 0$.

13

Preuve. Supposons que l'on ait $\ell < 0$.

Prenons ε dans $]0, -\ell[$.

Il existe un rang N_1 tel que, pour tout $n \geq N_1$, on ait $\ell - \varepsilon \leq u_n \leq \ell + \varepsilon < 0$.

Or il existe un rang N_2 tel que, pour tout $n \geq N_2$, on ait $u_n \geq 0$.

En particulier, pour tout $n \ge \max(N_1, N_2)$, nous avons $u_n < 0 \le u_n$, ce qui est absurde.

Théorème de convergence des suites croissantes majorées. Soit (u_n) une suite de réels, croissante et majorée. Alors la suite (u_n) converge.

Preuve. Posont $A = \{u_n, n \in \mathbb{N}\}$. A est non vide, et comme $(u_n)_n$ est majorée, l'ensemble A est majoré. A possède donc une borne supérieure s.

Montrons que $(u_n)_n$ converge vers s.

Tout d'abord, s est majorant de A, donc : $\forall n \in \mathbb{N}, u_n \leq s$.

Si maintenant $\varepsilon > 0$, $s - \varepsilon$ n'est plus majorant de A, donc il existe $N \in \mathbb{N}$ tel que $u_N > s - \varepsilon$.

La suite (u_n) étant croissante, pour tout $n \ge N$, on a $u_n \ge u_N > s - \varepsilon$.

On a bien prouvé que :

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \ge N, \quad s - \varepsilon < u_n \le s.$$

En particulier:

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \ge N, \quad s - \varepsilon \le u_n \le s + \varepsilon.$$

Ceci prouve bien que $(u_n)_n$ converge vers s et achève la preuve du théorème.

Théorème des suites adjacentes. Soient (u_n) et (v_n) deux suites de réels. On suppose que :

- $(u_n)_n$ est décroissante et $(v_n)_n$ est croissante
- $-\lim_{n\to+\infty}(u_n-v_n)=0.$

Alors $(u_n)_n$ et (v_n) convergent et ont même limite.

Preuve.

En effet, la suite $(u_n - v_n)$ est décroissante et tend vers 0. Elle est donc à valeurs positives ou nulles (sinon il existe N tel que $u_N - v_N < 0$ et alors, pour tout $n \ge N$, on a $u_n - v_n \le u_N - v_N < 0$, ce qui est absurde car $\lim_{n \to +\infty} (u_n - v_n) = 0$).

On a donc pour tout $n \in \mathbb{N}$, $v_n \leq u_n \leq u_0$. La suite $(v_n)_n$ est donc croissante majorée donc convergente vers $\ell \in \mathbb{R}$.

De même, pour tout $n \in \mathbb{N}$, $v_0 \leq v_n \leq u_n$. La suite $(u_n)_n$ est donc décroissante minorée donc convergente vers $\ell' \in \mathbb{R}$.

La suite $(u_n - v_n)$ converge vers 0 donc $\ell' - \ell = 0$, ce qui entraı̂ne que $\ell = \ell'$.