Examen de MM1-M23 : Equations aux Dérivées Partielles. SEPTEMBRE 2005 DOCUMENTS POLYCOPIÉS DU CTES AUTORISÉS

EXERCICE.

Soit $n \geq 2$, \mathbb{S}_n la sphère unité de \mathbb{R}^n , $d\sigma_n$ l'élément de surface sur \mathbb{S}_n , \mathbb{B}_n la boule unité de \mathbb{R}^n et $\omega_n = \sigma_n(\mathbb{S}_n)$.

1. Soit f une fonction continue sur \mathbb{S}_n . Montrez que la solution u du problème de Dirichlet

$$\begin{cases} \Delta u = 0 & \text{dans } \mathbb{B}_n \\ u = f & \text{sur } \mathbb{S}_n \end{cases}$$

est donnée par

$$u(x) = \frac{1}{\omega_n} \int_{\mathbb{S}_n} f(\zeta) \frac{1 - ||x||^2}{||x - \zeta||^n} d\sigma_n(\zeta).$$

On appelle opérateur de Poisson l'opérateur qui à une fonction f continue sur \mathbb{S}_n associe la fonction P[f] donnée par

$$P[f](x) = \frac{1}{\omega_n} \int_{\mathbb{S}_n} f(\zeta) \frac{1 - ||x||^2}{||x - \zeta||^n} d\sigma_n(\zeta).$$

2. Montrez que si une fonction f est harmonique dans la boule unité alors,

$$\forall x \in \mathbb{B}_n, \qquad f(x) = P[f_{|\mathbb{S}_n}](x).$$

On se propose de montrer que si f est un polynôme sur \mathbb{R}^n , alors $P[f_{|\mathbb{S}_n}]$ est encore un polynôme de degré inférieur ou égal à celui de f.

- **3.** Soit f un polynôme de degré m sur \mathbb{R}^n . Montrez que, si m=0 ou m=1, alors $P[f_{|\mathbb{S}_n}]=f$. (indication : remarquez que tout polynôme de degré 0 ou 1 est harmonique).
- **4.** On se propose de montrer que, si f est un polynôme de degré $m \geq 2$, alors il existe un polynôme g de degré m-2 tel que

$$P[f_{|\mathbb{S}_n}] = (1 - ||x||^2)g + f.$$

4.1. Montrer qu'il suffit de prouver qu'il existe un polynôme g de degré inférieur ou égal à m-2 tel que

$$\Delta((1 - ||x||^2)g) = -\Delta f.$$

4.2. On note E l'espace vectoriel des polynômes sur \mathbb{R}^n de degré inférieur ou égal à m-2. On note $T:E\to E$ qui à $h\in E$ associe

$$\Delta((1-||x||^2)h).$$

En utilisant le principe du maximum, montrez que T est injective. 4.3. Conclure.

- **5.** Montrez qu'il n'existe pas de polynôme f tel que $||x||^2 f$ soit harmonique (indication : sinon, montrez qu'on aurait $P[f_{|\mathbb{S}_n}] = ||x||^2 f$).
- **6.** Montrez que si f est un polynôme tel que $f_{|\mathbb{S}_n} = 0$ alors il existe un polynôme g tel que $f = (\|x\|^2 1)g$.

EXERCICE.

Résoudre l'équation aux dérivées partielles dans \mathbb{R}^2 d'inconnue u vérifiant

$$2x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$$

sachant que u(1,y)=h(y) où $h:\mathbb{R}\to\mathbb{R}$ est une fonction de classe C^1 sur \mathbb{R} .

Problème.

Soit $n \in \mathbb{N}^*$ et

$$P(D) = \sum_{|J| < m} a_J \frac{\partial^{|J|}}{\partial x^J}$$

un opérateur linéaire à coefficients constants d'ordre m, où

$$J=(j_1,\ldots,j_n), \quad |J|=j_1+\cdots+j_n \quad ext{et} \quad rac{\partial^{|J|}}{\partial x^J}=rac{\partial^{j_1+\cdots+j_n}}{\partial x_1^{j_1}\ldots\partial x_n^{j_n}}.$$

On considère un ouvert Ω de \mathbb{R}^n . $\mathcal{D}(\Omega)$ désigne l'espace des fonctions de classe C^{∞} à support compact dans Ω . $L^2(\Omega)$ désigne l'espace de Hilbert des classes de fonctions mesurables à valeurs complexes et dont le carré du module est intégrable pour la mesure de Lebesgue dans Ω . Les normes et produits scalaires dans $L^2(\Omega)$ seront notés $\langle \cdot, \cdot \rangle$ et $\| \cdot \|$. On a

$$\langle u, v \rangle = \int_{\Omega} u \bar{v} \, d\lambda \quad \text{et} \quad ||u||^2 = \int_{\Omega} |u|^2 \, d\lambda$$

où $d\lambda$ désigne la mesure de Lebesgue sur \mathbb{R}^n .

1. Soit $P(D) = \sum a_J \frac{\partial^{|J|}}{\partial x^J}$ et $g \in L^2_{loc}(\mathbb{R}^n)$. Montrez que $u \in L^2_{loc}(\mathbb{R}^n)$ est solution de

$$P(D)u = g$$

au sens des distributions si et seulement si :

$$\forall \varphi \in \mathcal{D}(\Omega), \qquad \langle u, P^*(D)\varphi \rangle = \langle g, \varphi \rangle$$

où
$$\langle u, v \rangle = \int_{\mathbb{R}^n} u \bar{v} \, d\lambda$$
 et $P^*(D) = \sum (-1)^{|J|} \overline{a_J} \frac{\partial^{|J|}}{\partial x^J}$.

Soit P(D) un opérateur linéaire à coefficients constants d'ordre m. On admet que, si Ω est un ouvert <u>borné</u> de \mathbb{R}^n , il existe une constante C>0 telle que :

$$\forall \varphi \in \mathcal{D}(\Omega), \qquad \|P(D)\varphi\| \ge C\|\varphi\| \tag{1}$$

On se propose de montrer que, si Ω est borné dans \mathbb{R}^n et $g \in L^2(\Omega)$, alors il existe $u \in L^2(\Omega)$ solution de

$$P(D)u = g$$

au sens des distributions avec $||u|| \le \frac{1}{C}||g||$, où C est la constante introduite de l'équation (1).

2. Montrez que

$$\forall \varphi \in \mathcal{D}(\Omega), \qquad \|P(D)\varphi\|^2 = \|P^*(D)\varphi\|^2$$

- (utiliser le fait que des opérateurs à coefficients constants commutent entre eux). En déduire que $\forall \varphi \in \mathcal{D}(\Omega) \quad \|P^*(D)\varphi\| \geq C\|\varphi\|$.
- **3.** Soit $E = \{ \psi = P^*(D)\varphi \ / \ \varphi \in \mathcal{D}(\Omega) \}$. En utilisant la question précédente, montrez que l'application $E \ni \psi \mapsto \langle g, \varphi \rangle$ est bien définie et que c'est une forme semi-linéaire continue pour la norme L^2 . (rappel : si E est un \mathbb{C} -espace vectoriel et $f: E \to \mathbb{C}$ une application, on dit que f est semi-linéaire si et seulement si $\bar{f}: E \ni x \mapsto f(x)$ est linéaire).
- 4. Montrez qu'il existe $u \in \overline{E}$ (adhérence de E pour la norme L^2) tel que

$$\forall \varphi \in \mathcal{D}(\Omega) \qquad \langle g, \varphi \rangle = \langle u, P^*(D)\varphi \rangle.$$

5. Conclure.