Corrigé du Devoir nº 1

Exercice 1.

- 1. D'après l'exercice 0.22, tout ensemble infini contient un ensemble dénombrable, d'où l'existence de G.
- **2.** La réunion de deux ensembles dénombrable est encore dénombrable. Il existe donc une bijection g de $F \cup G$ dans \mathbb{N} . Comme G est dénombrable, il existe une bijection h de G dans \mathbb{N} . En particulier, $f = h^{-1} \circ g$ est une bijection de $F \cup G$ dans G.
- **3.** Si $x \notin F \cup G$, alors $\varphi(x) = x$ n'appartient pas à F. Si $x \in F \cup G$, alors $\varphi(x) = f(x)$ est dans G, et donc n'est pas dans F; donc φ est bien définie.

Montrons que φ est injective. Soient $x, y \in E$ tels que $\varphi(x) = \varphi(y)$.

- . Si $x \notin F \cup G$ et $y \notin F \cup G$, alors $\varphi(x) = x$ et $\varphi(y) = y$ donc x = y.
- . Si $x \in F \cup G$ et $y \in F \cup G$, alors $\varphi(x) = f(x) = \varphi(y) = f(y)$, ce qui implique que x = y car f est bijective.
- . Si $x \in F \cup G$ et $y \notin F \cup G$, alors $\varphi(x) = \varphi(y)$ implique f(x) = y, soit $f(x) \notin G$. C'est absurde
- . De même, on ne peut pas avoir $x \notin F \cup G$ et $y \in F \cup G$.

On a donc bien prouvé que φ est injective.

Montrons que φ est surjective. Soit $y \in E \setminus F$. Si y est dans G et si $x \in F \cup G$ tel que f(x) = y, alors $\varphi(x) = y$. Sinon $y \in E \setminus (F \cup G)$ ce qui implique que $y = \varphi(y)$. On a donc bien prouvé que φ est surjective donc bijective. En particulier, $E \setminus F$ et E sont équipotents.

Exercice 2. Inégalité de Cauchy-Schwarz

1. Si $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ et $y = (1, \ldots, 1) \in \mathbb{R}^n$, alors

$$|\langle x, y \rangle|^2 = (x_1 + \dots + x_n)^2 \le ||x||^2 ||y||^2 = n(x_1^2 + \dots + x_n^2).$$

2. D'après l'inégalité de Cauchy-Schwarz,

$$n^{2} = \left(\sum_{i=1}^{n} 1\right)^{2} = \left(\sum_{i=1}^{n} \sqrt{x_{i}} \frac{1}{\sqrt{x_{i}}}\right)^{2} \le \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)$$

donc $m \ge n^2$. Pour $x_1 = \cdots = x_n = 1$, on a

$$\left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} \frac{1}{x_i}\right) = n^2,$$

2 Devoir nº 1

3. Si X = (x, y, z, t) et Y = (1, 2, 3, 4) dans \mathbb{R}^4 , alors

$$|x + 2y + 3z + 4t| \le ||X||_2 ||Y||_2 \le \sqrt{30}$$

donc $M \leq \sqrt{30}$. On sait qu'il y a égalité dans l'inégalité de Cauchy-Schwarz si et seulement si la famille (X,Y) est liée. Si on prend $X=\lambda Y$ avec λ tel que $\|X\|_2=1$, c'est à dire que

$$X = \left(\frac{1}{\sqrt{30}}, \frac{2}{\sqrt{30}}, \frac{3}{\sqrt{30}}, \frac{4}{\sqrt{30}}\right)$$

alors

$$\langle X, Y \rangle = \sqrt{30},$$

et donc $M = \sqrt{30}$.

Exercice 3.

1. Si $N_1(x,y)=0$ alors $\sqrt{x^2+y^2}=0$, ce qui implique que (x,y)=0. Remarquons que, pour $a,b\in\mathbb{R}$, on a $\max(a,b)=\frac{1}{2}(a+b+|a-b|)$. Si $\lambda\in\mathbb{R}$, alors

$$\begin{split} N_1(\lambda(x,y)) &= \frac{1}{2} \left(\sqrt{\lambda^2 x^2 + \lambda^2 y^2} + |\lambda x - \lambda y| + \left| \sqrt{\lambda^2 x^2 + \lambda^2 y^2} - |\lambda x - \lambda y| \right| \right) \\ &= \frac{1}{2} \left(|\lambda| \sqrt{x^2 + y^2} + |\lambda| |x - y| + |\lambda| \left| \sqrt{x^2 + y^2} - |x - y| \right| \right) = |\lambda| N_1(x,y). \end{split}$$

Comme $\|\cdot\|_2$ est une norme sur \mathbb{R}^2 , pour $(x,y)\in\mathbb{R}^2$ et $(x',y')\in\mathbb{R}^2$, on a

$$\sqrt{(x+x')^2 + (y+y')^2} \le \sqrt{x^2 + y^2} + \sqrt{x'^2 + y'^2} \le N_1(x,y) + N_1(x',y').$$

On a aussi

$$|(x+x') - (y+y')| = |(x-y) + (x'-y')| \le |x-y| + |x'-y'| \le N_1(x,y) + N_1(x',y').$$

En particulier

$$N_1((x,y) + (x',y')) \le N_1(x,y) + N_1(x',y'),$$

ce qui montre que N_1 est une norme. La boule unité de N_1 a l'allure suivante :

Corrigé. 3

Si $N_2(x,y)=0$ alors $\frac{x^2}{9}=\frac{y^2}{4}=0$ ce qui équivaut à (x,y)=0. Si $\lambda\in\mathbb{R},$ alors

$$N_2(\lambda(x,y)) = \sqrt{\lambda^2 \left(\frac{x^2}{9} + \frac{y^2}{4}\right)} = |\lambda| N_2(x,y).$$

Si (x, y) et (x', y') sont dans \mathbb{R}^2 , alors

$$N_2((x,y) + (x',y')) = \left\| \left(\frac{x+x'}{3}, \frac{y+y'}{2} \right) \right\|_2 \le \left\| \left(\frac{x}{3}, \frac{y}{2} \right) \right\|_2 + \left\| \left(\frac{x'}{3}, \frac{y'}{2} \right) \right\|_2$$

car $\|\cdot\|_2$ est une norme et donc

$$N_2((x,y) + (x',y')) \le N_2(x,y) + N_2(x',y'),$$

ce qui montre que N_2 est une norme. La boule unité de N_2 a l'allure suivante :

2. Si $(x,y) \in \mathbb{R}^2$, alors

$$N_2(x,y) = \sqrt{\frac{x^2}{9} + \frac{y^2}{4}} \le \sqrt{\frac{\|(x,y)\|_{\infty}^2}{9} + \frac{\|(x,y)\|_{\infty}^2}{4}} = \|(x,y)\|_{\infty} \sqrt{\frac{1}{9} + \frac{1}{4}} \le \|(x,y)\|_{\infty}.$$

On a

$$\begin{aligned} \|(x,y)\|_{\infty} &= \sqrt{\|(x,y)\|_{\infty}^2} = \sqrt{\max(|x|,|y|)^2} \\ &\leq \sqrt{\max(|x|,|y|)^2 + \min(|x|,|y|)^2} = \sqrt{x^2 + y^2} = \|(x,y)\|_2. \end{aligned}$$

Il est clair qu'on a $\|\cdot\|_2 \leq N_1$.

Montrons que $N_1 \leq 4N_2$. Soit $(x, y) \in \mathbb{R}^2$. On a

$$\sqrt{x^2 + y^2} \le \sqrt{\frac{16}{9}x^2 + 4y^2} = 4\sqrt{\frac{x^2}{9} + \frac{y^2}{4}}.$$

4 Devoir no 1

On a aussi

$$|x-y| \le 4\sqrt{\frac{x^2}{9} + \frac{y^2}{4}}$$

si et seulement si

$$(x-y)^2 \le 16\left(\frac{x^2}{9} + \frac{y^2}{4}\right)$$

soit si et seulement si

$$\frac{7}{9}x^2 + 3y^2 + 2xy \ge 0.$$

Si on regarde cette dernière expression comme un trinôme en x, on voit qu'elle est positive si et seulement si le discriminant de ce trinôme en x est négatif ou nul, soit si et seulement si

$$(2y)^2 - 4 \times 3y^2 \times \frac{7}{9} = -\frac{16}{3}y^2 \le 0,$$

ce qui est évidemment le cas. En conclusion, on a bien

$$N_1(x,y) \le 4N_2(x,y).$$

3. On a

$$|x| + |y| = 3\frac{|x|}{3} + 2\frac{|y|}{2} = \le \sqrt{3^2 + 2^2}N_2(x, y) = \sqrt{13}N_2(x, y)$$

d'après l'inégalité de Cauchy-Schwarz ; donc $k \leq \sqrt{13}$.

Si on regarde le cas d'égalité dans l'inégalité de Cauchy-Schwarz, c'est-à-dire si on prend par exemple (x,y) tel que |x|/3=3 et |y|/2=2 soit x=9 et y=4, on a

$$|x| + |y| = 13$$

et
$$N_2(x,y) = \sqrt{13}$$
 donc $k \ge \frac{N_2(x,y)}{N_1(x,y)} = \sqrt{13}$, ce qui implique que $k = \sqrt{13}$.

Exercice 4.

- 1. Supposons d(x,y) < d(y,z). On a $d(x,z) \leq \max(d(x,y),d(y,z)) = d(y,z) \leq \max(d(y,x),d(x,z))$. Or, comme d(x,y) < d(y,z), la dernière inégalité entraı̂ne que $\max(d(y,z),d(x,z))$ ne peut valoir d(y,x) et donc $d(y,z) \leq d(x,z)$ ce qui implique que toutes les inégalités précédentes sont des égalités et donc que $d(x,z) = d(y,z) = \max(d(x,y),d(y,z))$. De même si d(x,y) > d(y,z).
- **2.** Si $y \in B(x,r)$ alors d(x,y) < r. Si $z \in B(x,r)$, alors d(x,z) < r et donc d(y,z) < r, soit $B(x,r) \subset B(y,r)$. De même pour l'autre inclusion. Si $z \in B(x,r) \cap B(y,r')$ avec $r \le r'$ alors B(z,r) = B(x,r) = B(y,r), ce qui implique que $B(x,r) \subset B(y,r')$.

La distance discrète est un exemple de distance ultramétrique.

3. Il est clair que, pour tous $x, y \in E$, d(x, y) = 0 si et seulement si x = y et que d(x, y) = d(y, x). Soient $x, y, z \in E$. Montrons que $d(x, z) \leq \max(d(x, y), d(y, z))$. Si x = y ou x = z ou y = z, c'est clair. Supposons donc $x \neq y \neq z \neq x$. Il nous faut montrer que $k(x, z) \geq \min(k(x, y), k(y, z))$. Soit $n < \min(k(x, y), k(y, z))$. On a $x_n = y_n$ et $y_n = z_n$, donc $x_n = z_n$, ce qui implique que n < k(x, z). Et donc

Corrigé. 5

 $k(x,z) \ge \min(k(x,y),k(y,z))$, ce qui prouve que d est une distance ultramétrique sur E.

- **4.1.** Si x = r/s = r'/s', il faut montrer que $v_p(r) v_p(s) = v_p(r') v_p(s')$, c'est-à-dire que la valuation d'un rationnel est indépendante de la fraction choisie représentant ce rationnel. Or r/s = r'/s' si et seulement si rs' = r's et donc $v_p(rs') = v_p(r) + v_p(s') = v_p(r's) = v_p(r') + v_p(s)$, soit encore $v_p(r) v_p(s) = v_p(r') v_p(s')$. La définition est donc bien cohérente.
 - Si x = r/s et y = r'/s' alors $v_p(xy) = v_p(rr'/ss') = v_p(rr') v_p(ss') = v_p(r) + v_p(r') v_p(s) v_p(s') = v_p(r) v_p(s) + v_p(r') v_p(s') = v_p(x) + v_p(y)$.
- **4.2.** Montrons tout d'abord que, pour tous $x, y \in \mathbb{Z}^*$, on a $v_p(x-y) \ge \inf(v_p(x), v_p(y))$. Si $k = \inf(v_p(x), v_p(y))$, il suffit de montrer que p^k divise x y. Or $k \ge v_p(x)$ donc p^k divise x. De même, p^k divise y, et on obtient bien que p^k divise x y, ce qui prouve que l'on a bien l'inégalité dans \mathbb{Z}^* . Si x, y sont dans \mathbb{Q}^* et sont de la forme x = r/s et y = r'/s' avec r, r', s', s' dans \mathbb{Z} . Les nombres xss' et yss' sont dans \mathbb{Z} donc $v_p(xss' yss') \ge \inf(v_p(xss'), v_p(yss')$. On a donc

$$v_p(xss' - yss') = v_p(x - y) + v_p(ss') \ge \inf(v_p(xss'), v_p(yss'))$$

= $\inf(v_p(x) + v_p(ss'), v_p(y) + v_p(ss')) = \inf(v_p(x), v_p(y)) + v_p(ss'),$

et donc

$$v_p(x-y) \ge \inf(v_p(x), v_p(y)).$$

4.3. Il suffit de vérifier l'inégalité triangulaire plus forte. Si $x \neq y \neq z \neq x$, on sait qu'on a $v_p(x-z) = v_p((x-y) - (z-y)) \ge \inf(v_p(x-y), v_p(y-z))$ et donc

$$d(x,z) = p^{-v_p(x-z)} \le \max(p^{-v_p(x-y)}, p^{-v_p(y-z)}) = \max(d(x,y), d(y,z)).$$

4.4. Si V est un voisinage de 0 pour la topologie p-adique alors V contient une boule de centre 0 et de rayon ε . Il suffit donc de montrer que toute boule de centre 0 et de rayon ε est dense dans $\mathbb Q$ pour la topologie usuelle de $\mathbb Q$. Intuitivement, dire qu'un rationnel x est proche de 0 pour la topologie p-adique, c'est dire que $v_p(x)$ est grand. Nous allons montrer que l'ensemble des rationnels pour lesquels $v_p(x)$ est grand est un ensemble dense dans $\mathbb Q$ pour la topologie usuelle.

Soit x = r/s dans \mathbb{Q} . Posons, pour $n \in \mathbb{N}^*$, $x_n = \frac{p^n r}{p^n s + 1}$. On a $x_n = \frac{r}{s + p^{-n}}$ qui tend vers x pour la topologie usuelle. De plus, $v_p(p^n r) \ge n$ et $v_p(p^n s + 1) = 0$ car p ne divise pas 1. On en déduit que $v_p(x_n) \ge n$ et donc que $d(x_n, 0)$ tend vers 0. En particulier, il existe $n_0 \in \mathbb{N}^*$ tel que pour tout $n \ge n_0$, on ait $x_n \in B(0, \varepsilon)$ et donc la boule de centre 0 et de rayon ε est bien dense dans \mathbb{Q} pour la topologie usuelle. (cf. corollaire 5.4.3 du chapitre 1).

Si X est égal à l'ensemble vide, alors le complémentaire de X est \mathbb{Q} , qui est un voisinage de 0. X n'est manifestement pas dense dans \mathbb{Q} donc la deuxième propriété énoncée est fausse.