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Abstract

This thesis addresses the problem of separating image components that have different
structure, when different observations of blurred mixtures of these components are
available. When only a single component is present and has to be extracted from
a single observation, this reduces to the deblurring and denoising of one image, a
problem well described in the image processing literature. On the other hand, the
separation problem has been mainly studied in the simple case of linear mixtures (i.e.
without blurring). In this thesis, the full problem is addressed globally, the separation
being done simultaneously with the denoising and deblurring of the data at hand.

One natural way to tackle the multi-components/multi-observations problem in
the blurred context is to generalize methods that exist for the enhancement of a
single image. The first result presented in this thesis is a mathematical analysis of a
heuristic iterative algorithm for the enhancement of a single image. This algorithm
is proved to be convergent but not regularizing; a modification is introduced that
restores this property. The main object of this thesis is to develop and compare
two methods for the multi-components/multi-observations problem: the first method
uses functional spaces to describe the signals; the second method models the local
statistical properties of the signals. Both methods use wavelet frames to simplify the
description of the data. In addition, the functional method uses different frames to
characterize different components.

The performances of both algorithms are evaluated with regards to a particular
astrophysical problem: the reconstruction of clusters of galaxies by the extraction of
their Sunyaev-Zel'dovich effect in multifrequency measurements of the Cosmic Mi-
crowave Background anisotropies. Realistic simulations are studied, that correspond
to different experiments, future or underway. It is shown that both methods yield
clusters maps of sufficient quality for subsequent cosmological studies when the res-
olution of the observations is high and the level of noise moderate, that the noise
level is a limiting factor for observations at lower resolution, and that the statistical
algorithm is robust to the presence of point sources at higher frequencies.
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Chapter 1

Introduction

Imaging refers to the science of obtaining pictures or more complicated spatial rep-
resentations, such as animations or 3-D computer graphics models, from physical
objects. In a scientific context, the acquired images reflect measurements of physi-
cal quantities that are analyzed to understand the spatial properties of the observed
phenomena. Imaging techniques have been developed to measure different quantities,
with different resolution and reliability. These techniques keep improving, allowing
us to collect and store more data, with greater precision, which in turns makes it
possible to seek to understand finer scale phenomena. However, the quality of an
image is naturally limited by the physical characteristics of the instrument used to
collect the data, such as the size of the optical system and its maximum sampling
rate, and by the physical limits linked to the phenomenon itself. E.g. the amplitude
of the signal of interest may be very low compared to the amplitude of other signals
that are necessarily imaged at the same time. Therefore image processing tools have
to be developed simultaneously to imaging techniques, so that the improvements in
image acquisition can be exploited optimally.

The contributions of this thesis are the analysis of existing methods and the devel-
opment of new methods for the processing of images under the following assumptions:
one seeks to recover the set of image components, f1,..., fa, with M > 1, given a
set of L observed images ¢i,..., 9z, with L > 1, knowing the linear operators 7, ,

€ [1, M], I € [1, L] such that the observed images ¢; can be modeled by

M
Vie[LL], gi=Y Tuifntm (1.1)
m=1

where each n; denotes a noise term and [ky, ko] denotes the set: {k € Z : k; <
k < ky}. In this framework, the components fi, ..., fy reflect measurements related
to different phenomena. One may be interested in all, some, or even only one of
them. A large set of image processing problems can be described by equation (1.1):
the denoising of one image (M = L = 1 and T}, is the identity); the deblurring
of one image (M = L = 1 and T3, is a convolution); the fusion of images of the
same phenomenon acquired by different modalities, (M = 1, L > 1) if the process of
acquisition for each modality can be considered linear; the extraction of components
from several observations of linear mixtures of these (M > 1, L > 1, T},,; are scalars)...
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There are many different ways to develop image processing algorithms. At one
end of the spectra are algorithms giving the analytic solution to a mathematical
problem where each unknown has been modeled precisely enough so that the solution
is defined without ambiguity and can be computed. For example, if the image f and
the noise n are independent Gaussian processes, then the conditional expectation of
the random variable f given the random variable g = f + n, noted E{f|g}, is the
best least-square estimate of f in the set g-measurable and square integrable random
variables. That is, E{f|g} the random variable k(g) that minimizes the quantity
E{|f — k(g)|*}, with k& measurable and k(g) square integrable. If the covariance
matrices Cy and C,, of f and n are known then E{f|g} can be computed by the
Wiener filter E{f|g} = C¢(Cg + Cy)'g. At the other end of the spectra are heuristic
algorithms. These may give approximate solution to a well-defined mathematical
problem that can not be solved analytically. More generally, heuristic algorithms are
procedures designed to take advantage of some known properties of the signals, or to
combine several aproaches, even when these are difficult to express mathematically.
Unless an algorithm computes the analytic solution to a mathematical problem, its
properties can only be studied experimentally.

The first contribution of this thesis is to provide a mathematical study of an adap-
tive iterative algorithm proposed by J-L. Starck in [58] to deconvolve one image. The
algorithm proposed combines a known deblurring iterative scheme, with an adaptive
projection on selected wavelet coefficients. This procedure was successfully used on
astrophysical images, however, no mathematical study of this algorithm was provided.
We review the mathematical framework proposed by I. Daubechies, M. Defrise and
C. De Mol in [16] to solve inverse problems by another iterative algorithm in sec-
tion 2.2, and show in section 2.3 how to use it to study J-L Starck’s algorithm. We
prove mathematically and by example that the proposed algorithm may give unde-
sired results, namely that in the limit where the noise vanishes, the original image
may not be recovered. In other words, this algorithm is not consistent. We propose
a modification and show in section 2.4 that it restores consistency.

The deconvolution problem has been largely addressed in the literature in the case
of a single image, i.e. when the problem is to restore the image f, from a blurred and
noisy observation g =T f+n = b* f +n (x denotes the convolution). The task is not
easy because the convolution operator is ill-conditioned, making it difficult to control
the size of the noise term after inversion. A number of different algorithms have
proposed, from simple linear filtering [63], to iterative algorithms [37, 49, 42], using
deterministic [26] or statistical description of the data [33], and various tools such as
PDE [51, 9] or multiscale decompositions [21, 30]... (see [34] for a more exhaustive list
and description of deconvolution methods.) It has been established that deconvolution
methods yield best results when the conditioning of the deconvolution operator and
the structural properties of the image f and the noise n are taken into account at
the same time ([30, 39]). The separation of different components, i.e. the estimation
of M images fi,..., fi from linear mixtures (g, = 2%:1 tmifm + i, where the t,,
are scalars) has also been extensively studied [6, 61, 7. Whether the scalars t,,,
are assumed to be known or not, separating techniques seldom take into account
the spatial properties of the different signals fi,..., fas, or at least not to the same



extent as one does when processing a single image. This is harder to do in this
context because the different properties of each component have to be handled at the
same time. Both problems, the deconvolution and the separation, are usually studied
independently of each other, and ad-hoc combinations are carried out if needed.

In this thesis, two new algorithms are proposed that simultaneously (denoise,)
deblur and separate image components. More precisely, both algorithms compute
estimates of the components fi,..., fas in Eq. (1.1) when each T,,; can be written
Tini(z) = amy b * x, where the a,,; are scalars and the b,,; are 2-dimensional point
spread functions. The observations at hand are then modeled by:

M
Vil e [[1,[/]], g = Zam,l by * fm + ny. (12)
m=1

Since the last equations can be rewritten: VI € [1, L], ¢, = b % [fozl A fm) + 10,
the following two-steps algorithm seems like an appropriate solution: first deblur each
g; to obtain an estimate y; of Z%:l am, fm and secondly, separate the f,, from the
y;. However, in some cases it is desirable to avoid this intermediary step. This is the
case for the extraction of clusters of galaxies from observations of Cosmic Microwave
Background anisotropies, an application we study in detail in this thesis.

The observations g; for this application are images of portions of the sky, obtained
simultaneously at different light wavelengths (3 or 4 in the cases we considered). Each
observed image is the convolution of the “true” image with a blurring beam func-
tion, which depends on the wavelength; the observations are polluted by (Gaussian)
noise that is independent from one image to another. The most intense components
contained in the portion of sky observed besides the clusters of galaxies are the Cos-
mic Microwave Background (CMB) radiation, the Galaxy dust and infrared point
sources. The contribution from each component to each observation depends on the
wavelength. Hence the observations g; can be modeled by equation (1.2) with M =4
and L = 3 or 4. Our goal is to provide a “clean” image of the clusters of galaxies
present in the observations, that will be usable by astrophysicists to derive properties
of these clusters.

Clusters of galaxies are localized and compact objects sparsely distributed in the
sky. The blurring by a beam function is especially badly conditioned at high fre-
quencies, which correspond to small objects. Therefore, as mentioned earlier, the de-
convolution of clusters of galaxies (supposing they were the only component present
in the image), would be best when their localization is taken into account together
with the properties of the convolution. Wavelet transforms are adapted to this situ-
ation because they are well localized both in frequency (and therefore constrain the
conditioning of the convolution operator), and in space (so that clusters are well rep-
resented in wavelet space). However, in this case, the presence of other components
complicates the task. The other components are much more intense than the clusters’
signal, moreover they have very different spatial properties and the mixing scalar a,,;
vary greatly with the frequencies of observation. Therefore the spatial properties of
each intermediate deblurred image y; = 2%:1 Q1 fm are different and do not reflect
the properties of the clusters’ signal. Since the latter is largely dominated in each y;, it



would be very hard to recover a precise clusters’ image using the two-steps technique
proposed earlier. Instead, a method that solves the deconvolution and separation at
the same time can exploit the fact that the same clusters’ signal contributes to each
observation and therefore should give better results.

We designed two different approaches to simultaneously deblur and separate image
data. Both methods are flexible enough to take in account spatial properties that vary
from one component to another. One method is based on a variational framework;
the other is more statistical in nature. The variational method uses a generalization
of an algorithm proposed by I. Daubechies, M. Defrise and C. De Mol [16], that we
explain and discuss in Chapter 2, sections 2.2 and 2.5. The method proposed is the
minimization of the variational functional, by means of an iterative algorithm. In
subsection 2.5.1, we describe how to this method solves the general problem posed
by equation (1.1) (that is when the 7),, are general linear operators) and in the
next subsection (2.5.2), we explain how to to use the method for our astrophysical
application, deriving the parameters for separation of blurred mixtures and explaining
how to model the properties of our astrophysical components. For the statistical
approach, we were inspired by the work of J. Portilla, V. Strela, M. Wainwright
and E. Simoncelli [48], which attacked the simultaneous denoising and deblurring
of a single image. We explain in Chapter 3 how we extended this method to allow
component separation (i.e. to solve Eq. (1.2)) and sketch the precise application to
our astrophysical problem in Section 3.4.

As we noted earlier, the clusters’ signal is well described in wavelet space. To
avoid some drawbacks of the traditional decimated separable wavelet transform in
two dimensions, we use different redundant wavelet transforms: the dual tree com-
plex wavelet transforms for the variational approach [31, 32, 52, 53] and a steerable
pyramid for the statistical approach (inspired by but not completely identical to the
pyramid in [47]). The two transforms are described in Chapter 4, where we also
discuss the algorithm we used to implement them.

Finally, in Chapter 5, we show and discuss the results of the two approaches on
the astrophysical problem at hand, for several types of data sources. The resolution of
data acquired previously is not sufficient to study the Sunyaev-Zel’dovich signature of
clusters of galaxies, which is the particular effect we seek to estimate. However, several
experiments are now being planned or underway, that will make it possible to do so.
The different studies presented in Chapter 5 are made on realistic simulations of the
data that will be acquired in the near future. (These simulations have been provided
by astrophysicists.) This allows to assess the performances of both algorithms with
respect to not only image processing standards but also with respect to the science
that can be derived from these results. In particular, we asses the reliability in locating
clusters of galaxies and the precision of the intensity estimated after extracting a
cluster maps using both our algorithms. It turns out that each approach has strengths
and weaknesses when compared to each other. A summary of these results is presented
in Section 5.6.



Chapter 2

Functional method

2.1 Framework

In this chapter, we consider the problem of deconvolution of mixtures of components
as a variational problem, i.e. we wish to find estimates of the different components
by minimizing a variational functional. We will consider functionals composed of a
sum of discrepancy terms (one per observation) and regularization terms (one per
component):

L M 9 M
I foreos i) = 3o Tonitm = )|+ D mlltall, s (21
=1 m=1 l m=1

here the H} are Hilbert spaces, the 7, and p; are strictly positive scalars and the
Il.ll x,, are norms. The observations at hand are the {g;}icpr,zy. The {fin}tmep,a are
the components to be estimated. The mixing and blurring of component m at the
frequency of observation number [ is denoted by the linear operator 7).

The minimizers of such a functional will strike a balance between the deviation of
their image by the 7},,; from the observed data on the one hand, and the ||.| x,,-norm

on the other hand. This will give us a set of estimates fi, fao, ..., .]T‘]\M that have both
properties of well approximating the observed data and having small ||.| x,,-norm.
The ||.||x,,-norm here represent some “a priori knowledge” we have on the different
components we are seeking: we expect the true component f,, to have a rather small
Il-ll ,,-norm. Note that the set of plausible images of one component, for example the
set of CMB images, is not a vector space. So we do not try to design the vector space
X, so that each of its element corresponds to an image of component m. Rather, we
design X, so that the set of images of component m has a small ||.|| x,,-norm. We hope

that conversely, the estimate f/\m that we will obtain by minimizing (2.1) will be (close
to) a plausible image of component m because it has a small ||.| x, -norm. We shall
use, for example, norms that penalize discontinuities or sharp transitions and norms
that promote sparsity in a special representation like a wavelet representation. To do
so, we embed the components f,, into Hilbert spaces H¢ and consider |.|,,-norm




of the form: )

= [Z o) () |pm] " (2.2)

AEA
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where @™ ={¢7"}rea is a generating family of H’, .

A general approach to solve problems of this nature can be found in [16, 14, 4]. The
next section reviews the presentation in [16], which provides an iterative algorithm
solving the problem when L=M=1. We then study two different generalizations.
Section 2.3 and Section 2.4 are dedicated to the study of a slightly different problem
where the discrepancy terms depend on the observation; In Section 2.5, we gener-
alize the iterative presented in [16] to solve the general case with M objects and L
observations and describe its application to our astrophysical problem.

2.2 Iterative algorithm proposed by Daubechies,
Defrise and De Mol

In this section, we summarize the findings presented in [16]. Daubechies, Defrise and
De Mol present in this article an iterative algorithm to find a minimizer of Eq. (2.1)
when L = M = 1. The goal is then to estimate a single object f; from a single
observation g;. To simplify the notations, we shall drop the indexes and denote H;
the Hilbert space of the object H¢ and H, the Hilbert space of the observation H¢.
The problem reduces to:

Problem 2.2.1. Given p={p\}rea an orthonormal basis of Hy, a sequence of strictly
positive weights w={wx}xea, a scalar v > 0 and a scalar p with 1 < p < 2, find:

Tf = gl + 1%

f*=argmin J,  p(f) = argmin
feH feEH

where | flhwp = [Saen wal (Fr00) P17 = [Cacn wal a7 -

Note that we used the notation fy = (f, p,). We shall do so throughout this chapter
unless specified otherwise.

The functional J,  , is convex, bounded below and verifies lim s o Jywp(f) =
+00. Therefore it has a unique global minimum and has at least one minimizer. One
can seek such a minimizer by canceling its partial derivative in fy:

L) = AT TPy~ AT g+ sien() AP
A

If the operator T' is the identity operator, then the equations decouple and the so-
lution is given by solving f} = g — 252 sign(fy) [fa[P~". If p = 1, this reduces the
the soft-thresholding operator (see [8]). However, when 7" is not the identity, these
equations do not decouple which makes the problem harder to solve. Using surrogate
functionals, one can define a sequence of similar problems that are easy to solve, and
for which the sequence of minimizers obtained is strongly convergent in H; to a so-
lution of Problem 2.2.1. Moreover this scheme is regularizing. We explain it in detail
below.



2.2.1 Swurrogate functionals

Let us consider surrogate functionals J7 . where a is an element of H;. The JS
are similar to J,  , but are slightly modified so that:

e For any a, J7,  is strictly convex. Hence there exists a unique minimizer of

J wp» that we denote f5, .

e The partial derivatives 8{%;‘”"’ decouple Therefore, one can find each coordinate

{ ;‘;V , 1 independently by Solvmg ””p = 0 for each \.
Definition 2.2.2. Given a € Hy and C so that IT*T| < C, the surrogate functional
Je i Hy — R is defined by:

¥,W,p
I o) =1Tf = gl}, = ITf = Tal3, + C|lf —all, + I,

One verifies that the surrogate functional takes nonnegative values by noting that
IS wp(f) = Jown(f) + Cllf — all}y, — ITf — Tall3, with

v,W.p
Cllf —al3, = ITf = Tal%, Cllf —allfy, = (T(f —a), T(f —a)),,
Clf —all3, = (f —a, T"T(f —a >H

> C|If —allz, —IT*TIf - allZ,
> (C =TI — allz,
> 0

Since ||T*T|| < C, the term above is zero if and only if f = a, which ensures the strict

convexity of the surrogate functional J9 o . Its partial derivatives in fy decouple:

0Je ., : _
D () = 90 fy—2C T~ T Ta + s sign(h) [l
and the minimizer of the surrogate functional J7 i = is:
p = Spwn(Cat g~ TTa) 0
= A Sua({CatTg=TTa )y ) s
Here,
-1
S (1) < (a: + % sign(z) \xv’—l) Lfor1<p<2, (2.4)
where (.)~! denotes the inverse so that S, ,(z + % sign(z) [z[’~!) = x.
In particular, for p =1, S, 1 is the soft-thresholding operator:
r—w/2 if » > w/2
Swi(x)=<¢ 0 if |z < w/2 (2.5)
r4+w/2 if z < —w/2
Whereas for p = 2, one simply gets:
x
Sw = 2.6
o) = (26)

The following proposition summarizes the properties of the surrogate functionals:

7



Proposition 2.2.3. Suppose the operator T maps a Hilbert space Hi to another
Hilbert space Ha, with | T*T|| < C, and suppose g is an element of Ha. Let {@a}renbe
an orthonormal basis for Hy, and let w= {wy}ren be a sequence of strictly positive
numbers. Pick arbitrary v >0, p > 1 and a € H;. Define the functional I3, (f) on
Hl by

3w (D) =TS = gl +7 Y wal Al +ClLf = allay, = IT(f = )3, -
AeA
Then J2 , ,(f) has a unique minimizer in H,.
This minimizer is given by f = & Sywp (Ca+ T*g — T*Ta), where the operators Sy,
are defined by

Swp(h) =D Surslhr)er (2.7)
A

with the functions S, from R to itself given by (2.4), (2.5) and (2.6).

Note that one can always assume that C' = 1 since minimizing the surrogate
functional Jf i, - with the operator T" and the observation g is the same problem as
minimizing JS o, with the operator 7" = %T , the observation ¢’ = % g and the
weights &. This is also true for the initial functional J, y . Therefore, in the rest of
this chapter, we will assume that |77 < 1.

Next, we use a sequence of surrogate functionals and their minimizers to construct

a solution of the original problem.

2.2.2 TIterative algorithm: convergence and stability

The iterative algorithm consists in minimizing a sequence of surrogate functionals

J5 wp(f), choosing a™ to be the minimizer obtained at the previous step:

Algorithm 2.2.4. The iterative algorithm that solves Problem 2.2.1 proceeds as fol-
lows:

f° arbitrary

pro= agmin (330,(0) = Sy (7 T =TT 0z
1

The two following theorems summarize the findings presented in [16]. The first
theorem states that the iterative algorithm 2.2.4 converges strongly in the norm as-
sociated in the Hilbert space H; for any initial guess f°. The second theorem is
concerned with the stability of the method. It gives sufficient conditions to ensure
that the estimate recovered from a perturbed observation, g = T'f, + e, will approxi-
mate the object fj as the amplitude of the perturbation ||e||, goes to 0.

Theorem 2.2.5. Let T be a bounded linear operator from Hy to Ho, with norm
strictly bounded by 1. Take p € [1,2], and let Sy, be the shrinkage operator defined
by (2.7), where the sequence w={wy}xea is uniformly bounded below away from zero,



i.e. there exists a constant ¢ > 0 such that VA € A : wy > c¢. Then the sequence of
iterates

[P =S (" + T =TT, n=12,...,

with O arbitrarily chosen in Hy, converges strongly to a minimizer of the functional
Jown () = ITf = gllFe, + Iy

where || fllw,p denotes the norm || f|lw, = [ZAeA wy| (f, pr) |5”} 1/p, 1<p<2.

If the minimizer f* of J,w,p is unique, (which is guaranteed e.g. by p > 1 or
ker(T) = {0} ), then every sequence of iterates f™ converges strongly to f*, regardless
of the choice of f°.

Theorem 2.2.6. Assume that T is a bounded operator from Hy to He with ||T|| < 1,
that v > 0, 1 < p < 2 and that the entries in the sequence w={wy}repn are bounded
below uniformly by a strictly positive number c. Assume that either p > 1 orker(T') =
{0}. For any g € Hy and any v > 0, define f7, ., to be the minimizer of I w pig(f)-
If v = ~(e€) satisfies

62

lii% v(e) =0  and llir(l) ) =0, (2.8)

then we have, for any f, € Hi,

hm sup f* o fT 3 _ O |
0 ||9—Tfo||H2§E|| ¥(€)w.pig (%

where [T is the unique element of minimum || ||w,—norm in the set Sy, = {f;Tf =

Tf,}.

2.2.3 TIterative algorithm with complex or redundant frames

The algorithms and theorems presented so far in this section apply only to the case
where = {p)}ren is an orthonormal basis of H; and the scalar products (., p,) are
real. It will be useful in our application to use redundant and/or complex families
instead. To do that, one needs to make two changes, as was pointed out in [16].

Firstly, the definition of the operators Sy, has to be extended to complex num-
bers. This is done by applying S,y ;, only to the modulus of a complex number, keeping
the phase fixed:

Sw.p(r.e?) et Swp(r).e?, reR, 6 €l0,2n]. (2.9)

This change is sufficient to prove Proposition 2.2.3 and Theorems 2.2.5 and 2.2.6 with
the same algorithm 2.2.4.

Secondly, a clarification is required if the family ¢= {¢}ren is redundant. In
that case, the set of sequences of scalar products of elements of H;:

C = {{{f,ex hren, f € Hi},

9



is a strict subset of the set of square summable sequences [?(R) ( or [*(C)). As a
consequence f. ¢, defined in Eq.(2.3) need not be the minimizer of the surrogate

functional J7 i & because

fZ%ZSWA,p({Ca+T*g—T*Ta },\> Px (2.10)
A
does not imply that:

VA, {92 = ESsunp( { C at T'g = T'Ta 1) (2.11)

In the derivation of algorithm 2.2.4, we used the fact that Eq. (2.10) and Eq. (2.11)
are equivalent when = {@)} ca is an orthonormal basis. When o= {p)}ren is
redundant, this problem is rectified by projecting the sequence of coefficients obtained
at each step of the iteration algorithm onto the set of scalar products C:

" =PeSywp ("' +Tg—TTf "), n>1 (2.12)

where P is the projection onto the set C. (This can done more generally for any
closed convex set C, see Subsection 2.2.4.)

To illustrate the difference between a basis and a redundant frame, let us examine
the case where the operator T' is diagonal with respect to the tight frame = {p)}rea.
That is, there exist scalars {t)} ea such that:

vf et T =T(Y (fe o) =Dt lfon) v (2.13)
A€A A€A

We suppose that the algorithm is stopped after N steps.
If o= {pr}rea is an orthonormal basis, the iterations can be done in I2(R) (or

(C)):

Algorithm 2.2.7. First N steps of the iterative algorithm when T is diagonal on the
orthonormal basis @={vx}ren:

o Pick f° in Hy arbitrarily.

o Compute: ¢ = (f° pr), VA€EA.
o Forn=1,..,N, compute for all \: ¢} = Sva( (1 =) +taga )

o Output: fN =3, cNen

The intermediate estimates f!,..., f¥~! need not be synthesized, only their frame
coefficients, the ¢}, are computed. (For each n, {c}}iea is a series in [2.) We have:
& = (f",pa), Vn, YA. Therefore, if o= {p)}reca is an orthonormal basis, one only
needs to synthesize the final estimate f~ in H;, whereas if ¢o={p,}rca is redundant,
one has to synthesize f™ at each step:

10



Algorithm 2.2.8. First N steps of the iterative algorithm when T is diagonal on a
redundant tight frame @={v}ren:

o Pick f° € Hy arbitrary.
o Compute: ¢&§ = (f° pr), VA€EA.
e Forn=1,.,N, compute:
— For all A\: d} = Syp((1 =)' +t2g))

- fn = Z)\GA d%o)\
— For all \: ¢& = (f", )

e Output: fN.

Note that because = {@x}rea is redundant, although >\, dipr = > o5 Chn,
we do not have d} = ¢}. Therefore, one needs to synthesize f" at each step to find
the ¢} (this corresponds to the projection Fe).

In the redundant case, f™ is not the minimizer of the surrogate functional at each
step. The iterative algorithm still converges strongly. However, one can prove that the
limit is the minimizer of the initial functional only in some cases. Generally though,
it has been observed that using algorithm 2.2.4 yields good results with frames.

2.2.4 TIterative algorithm restricted to a closed convex set

The solution of problem 2.2.1 achieved by the iterative algorithm we presented is the
minimizer of the functional J, ., in the whole Hilbert space H;. As explained in
[16], it is possible to restrict the problem to a closed subset D of H;, for example the
set of positive functions. The procedure consists in projecting the solution obtained
at each step of the iterative algorithm onto the set D:

[ =PpSowp (f" ' +Tg—T"Tf" "), n>1 (2.14)

where Pp is the projection on the convex set D. Some astrophysical components in
our problem are positive and we will use this procedure to handle them.

Note that this is the same procedure that was used in the previous subsection to
take in account the redundancy of the frame since the set of scalar products C is a
closed subset of the set of square summable sequences.

2.3 Adaptive projections

In this section, we shall consider a generalization of the setting of [16], in which
weights are introduced in the discrepancy term as well as in the prior. These weights
were suggested originally by Jean-Luc Starck, in several papers and slightly different
versions (see e.g. [58, 57, 43]). One of the algorithms suggested was:

11



Algorithm 2.3.1.

f° arbitrary
fr = al;gmin S (frt+T*Mg—T*MTf "), n>1
€H1

with Mh = Z)\eA myhapa, and my =0 or 1 is chosen in function of g,.

At first, it seems that the algorithm was purely heuristic, and was only later
connected to a variational principle [59]. The weights m in Starck’s algorithm depend
on the observation itself, and will make the analysis trickier; we handle them by
introducing an “adaptive projection operator”.

2.3.1 Definition and corresponding iterative algorithm

Definition 2.3.2. Given an orthonormal basis {Ox}renof Ha, an element g in Ho
and a sequence of nonnegative thresholds T={T\}xea, the adaptive projection My  is
the map from Hso into itself defined by:

VhEHy, Mgr(h)= Y hibh

A st ga|>Ta
(where, as usual, fy denotes the scalar product (f,[5))

Note that M, , is an orthogonal projection for any g and 7. It is therefore a
continuous linear operator of unit norm, unless for all A, |gy| < 7\, in which case
M, ; = 0. One can use the adaptive projection M, to modify the similarity measure
(discrepancy term) so that it discards the coordinates of the observation g that are
deemed not reliable. More precisely, we consider in the fit to data term only the
coordinate of index A for which |g,| is greater than some predefined value 7. Problem
2.2.1 is thus modified into:

Problem 2.3.3. Given a sequence of strictly positive weights w={wy}xen, a sequence
of nonnegative thresholds T={Ty}xeaand scalars v and p with v > 0 and 1 < p < 2,

find:

fr=argmin J, - (f) = argmin | Mg (Tf = g)|3, + 11 fll5.,
feH feH

where || fllw,p s defined in Problem 2.2.1 and M, , is defined above (2.3.2).

The value of the functional J, ., -(f) acting on operator 7" and observation g is
exactly the value of the functional J,  ,(f) acting on operator M, . 7" and observation
M, - g. Hence once g and 7 are fixed, Problem 2.3.3 is solved the same way as Problem
2.2.1 with the iterative algorithm modified accordingly:

Algorithm 2.3.4. The iterative algorithm that solves Problem 2.3.3 proceeds as fol-

lows:
f° arbitrary
fn = S'YWJ-) (fn_l + T* Mgﬂ— g - T* Mgﬂ— Tfn_l) , Z 1

12



Note that for p = 1, this is exactly the iterative algorithm 2.3.1 proposed by Jean-
Luc Starck ! As is the case for Problem 2.2.1, the iterative algorithm 2.3.4 is strongly
convergent in H;, regardless of the choice of f* and the limit is always a solution of
Problem 2.3.3:

Theorem 2.3.5. Let T be a bounded linear operator from Hy to Hs, with norm
strictly bounded by 1. Take p € [1,2], {Tx}rera sequence of nonnegative numbers and
let Swp be the shrinkage operator defined by (2.7), where the sequence {wy}ren s
uniformly bounded below away from zero, i.e. there 3¢ > 0 s.t. YA € A : w, > c.
Then the sequence of iterates

fP =Sy (" + T My, g—T "My, T, n=1,2,...,
with O arbitrarily chosen in Hy, converges strongly to a minimizer of the functional

Jywepr(F) = | Mg (Tf = 97, + S

where | flly denotes the norm | flwy = [Syen wsl (o2 P77, 1< p <2 and
Mgﬂ'(h') = Z)\ st |ga|>Ta hAﬁ)\'

If the minimizer f* of Jywpr i unique, (which is guaranteed e.g. by p > 1
or ker(M, , T') = {0}), then every sequence of iterates f" converges strongly to f*,
regardless of the choice of f°.

Proof. As we noted before:

Jywprrg(f) = Mg (Tf =97, + gH\f 1% »
= [[(Mg:T)f = Mg 93, + YIfl,
= Jywpo, 7, g(f) with T'=Mg,T, ¢ =Mg,g

Noting that J, w0, 77, ¢ (f) is exactly the functional defined in Problem 2.2.1, it is
then sufficient to prove ||T”| is strictly smaller than 1 to prove the strong conver-

gence of the iterative algorithm 2.3.4 via Theorem 2.2.5. But |7"| = || My, T <
I Mg~ I-I7]]. Since Mg , is an orthogonal projection, || My T'|| = 1 or 0, and therefore
I} < 17l < 1. ]

2.3.2 Adaptive projections and diagonal operators

In this section, we illustrate the effects of the addition of the adaptive projection
M, ; in the iterative algorithm, by examining the simple case when 7' is a diagonal
operator on the basis o= {pr}rea: Tf = D catafaga. In that case, the adaptive
functional J, v p, » reduces to:

Jywpr(f) = Z <5{|g)\>TA}(t)\'f)\ - 9,\)2 + 7 wx |f,\\p) (2.15)

A€A

Hence, the solution f* is found by solving, independently for each \:
$3 = avgnin (B oyt = 1)+ s o (2.16)
BAS
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If |ga| < 7 (or ty = 0), then f} =0, otherwise f} = Syu, »p(r.gx ). Let us define the
adaptive thresholding operator that maps R to itself by:

_ [ Syp() iffz[>7
Arap(@) = { 0 otherwise (217)
Then, the solution of Eq. (2.15) is
fr= 2 Ars(Bia) e (2.18)

A s.t. t)\7£0

This means that the introduction of the adaptive projection M, - results in combining
a hard thresholding with parameter 7 to the operator S,,, , when T is diagonal. The
hard thresholding operator, or dead-zone function, maps R to itself and is defined by:

oz if|z>T
H,(z) = { 0 otherwise (2.19)

Suppose that T is the identity operator, that the weights {w)}\ea are identically 1
and that p = 1. If 7 > ~, the adaptive thresholding operator A, ., (Fig.2.1, middle) is
a compromise between the hard thresholding operator H, (Fig.2.1, left) and the soft-
thresholding operator S, ; (Fig.2.1 right) that would be used to solve Problem 2.2.1.
(Note that if 7 < v, the adaptive thresholding A, . ; reduces to the soft-thresholding

Sy1)-

Ty ; Ty Ty

—THy : : —THy : —T+y
- § i -t

-T -yoVY 1 -T -yoVY 1 -T -yoVY 1

Figure 2.1: Left: hard thresholding operator H,; middle: adaptive thresholding op-
erator A, right: soft-thresholding operator S, ;.

The hard thresholding operator H, can also be seen as an operator used for
minimization:
H,(g) = argmin ((x — g).0f1957}) (2.20)

zeR

Hence, H, corresponds to the limit of the adaptive thresholding operator A, as
v goes to 0. On the other hand, the adaptive thresholding A, . ; is in fact the soft-
thresholding S, ; as soon as v > 7. It is therefore natural to examine the results of
hard-thresholding, adaptive thresholding and soft-thresholding with a fixed value of
7 so study the influence of 7. Fig. 2.2 displays such a study on a piecewise smooth
signal. The top row of the figure shows the signal (left) and a noisy version of it
(right) that is taken as the observation g. The signal is then reconstructed from g
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using adaptive, soft- or hard-thresholding with different values of the parameter ~
for 7 = 3. The reconstructions obtained are displayed with v increasing clockwise,
i.e. middle row left: v = 0, middle row right: v = 1, bottom row right: v = 2, and
bottom row left: v = 3. The soft-thresholded reconstruction (bottom left) yields a
smoother reconstruction than the hard-threshold (middle left): the Gibbs effect is
much weaker at the discontinuities of the signal for the soft-thresholding. But on the
other hand it damps the signal, in particular the peaks. The adaptive thresholded
reconstructions (middle right and bottom right) allow to find a different balance
between the smoothness of the reconstruction and its precision for fast variations.

2.3.3 Stability

In this section, we investigate the regularization properties of the algorithm. Coarsely
speaking, we would like the reconstructed components to very close to the true ones if
the noise in the observation is negligible. More precisely, we will investigate whether
fi converges to f, when ||Tf,—g||», converges to zero. To do this, it will be convenient
to first define some subsets of H;. The first subset, My , is the set of elements of
‘H, that have the same image under T" as f, except maybe on the coordinates A such
that (Tf,), = 0:

Definition 2.3.6. Given two Hilbert spaces Hi and Ha, an operator T : Hi — Ha,
an orthonormal basis {Bx}renof Ho and an element f, of Hyi. The set My, is the
subset of elements of Hy that verify:

f €My, = Mg,o(Tf) = Tf, = [{Thohr #0= {Tf} = {Tf}s

For the coordinates A such that {Tf,}, = 0, one may have {T'f}, # 0 when f is
in My,. If f, is in ker(T") then M = H;. On the contrary, if VA, {Tf,}, # 0, then
My, is exactly the subset of H; having the same image as f, under 7'. Note that
M, is closed and convex. We also define H{™P as the set of elements f for which
the corresponding set M has a unique minimizer for the ||.||w -norm.

Definition 2.3.7. Given a Hilbert space Hy, H1"™" is the subset of elements of H,
that verify: f, is in Hi ™" if and only if the set My, =A{f: Mgy, oTf =Tfo} has a
unique element of minimum ||.||w.p-norm.

When p > 1, then HI"™™* = H,, regardless of T'. This is not true if p = 1, even if
ker T = {0}. It turns out that algorithm 2.3.4 is regularizing for elements f in H; ™",
and that the minimizer obtained in the limit ||7f, — g||#, goes to zero is exactly the
minimizer of the ||.|lw-norm in My, . This is the object of the following theorem:

Theorem 2.3.8. Assume that T is a bounded operator from Hy to He with ||T|| < 1,
that v > 0, p € [1,2] and that the entries in the sequence w={wy}rea are bounded
below uniformly by a strictly positive number c.

For any g € Hy and any v > 0 and any nonnegative sequence T={T\}rea, define
to be a minimizer of Jowprg(f). If v =7(€) and 7 = 7(€) satisfy:

*
Y, W,D,T39
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Original Noisy

0 200 400 600 800 1000 0 200 400 600 800 1000

Hard threshold 1=3 =3, y=1

0 200 400 600 800 1000 0 200 400 600 800 1000
Soft threshold y=3 =3, y=2

0 200 400 600 800 1000 0 200 400 600 800 1000
Figure 2.2: Top row, left: original signal; right: noisy signal (white noise, o = 1).

Other rows: reconstructions with 7 = 3, increasing parameter v clockwise (v = 0
(hard-threshold), 1 , 2, 3 (soft-threshold)).
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1. lim v(e) =0

e—0

62

2. lim — =0
—0 y(e)

3. VA €A, lir% T(€) =0
4.36>0, st: [e<d=VAeEA, Ty\(e) > €]
then we have, for any f, € H1™":
lim sup ||f ),w,p,7(e fTH'H _O
e—0 lg—Tfoll ¢, <c p7(€); g 1

where f1 is the unique element of minimum || |lw,-norm in the set M, .

We will prove this stability theorem in a similar manner as Theorem 2.2.6 is proved

in [16]. The proof proceeds as follows: first we prove that the norms || £
7p

(wpir(e); gllwp
are uniformly bounded. Secondly, we prove that when f, is in Hl , any sequence
{ Fen )owipi(en)s gl}" converges weakly to fI when ¢, converges to 0. (Here g, is any
clement in H, verifying ||gn, — Tfol|ln, < €,). Finally we prove strong convergence of
the {f7.) wpr(en): gntn Which proves Theorem 2.3.8.

Let us make some remarks before proving this theorem. One should point out
the estimate f] obtained through this algorithm is not necessarily what one expects.
Indeed, even in the ideal case where T has a bounded linear inverse, we do not
necessarily have fI = f,. This can happen only when {Tf,}\ = 0 for some \. If
{Tf,}» # 0 for all A, then the projection Myy, o is the identity and therefore My =
{f + My, oTf = Tf,} ={f:Tf = Tf,} and since T is one to one, this reduces to
M, = {f,}. Thisensures that fI = f,. However if {Tf,} = 0 for some A, then M7y, ¢
is a projection with a non-trivial kernel: ker(Mzyy, o) = Span{fy, A s.t. {T'f,}, = 0}.
When the intersection: ker(Mry, )N Im(7') is not trivial i.e there exists some nonzero
element h in H; so that Thy = Tf,, when Tf,, # 0, but Th) does not vanish for each
A where Tf,, = 0, then:

{fo} S My, = fo+ker(Mrpys, ) N Im(T)

and therefore fJ need not be equal to f,. This can happen even though T has a
bounded linear inverse ! Here is a simple example:

Example 1. Consider T : R? — R2, the bounded and linear operator defined by:

r(5) = CRIR) e a=(5) prmearo

IT|=5<1 and although T has a bounded inverse: T~ : ( ;; ) — 3 ( Q j_L ‘5}2 ),

) so that My, ={f : (Tf)1 = (Tfu)1} ={f:2fi + fo = 3a};

on|g

we have T f, = <

SRS

The element in M, with minimal I' norm is: f = ( ), and not f, itself.
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Hence under the conditions of Theorem 2.3.8, solving Problem 2.3.3 will never
enable us to recover f,, even when we observe the unperturbed image T'f, ! Indeed,
in order to be stable, this algorithm has to discard the coordinates in H, such that
Tf.,n = 0 even under an arbitrary small error of observation. The data-dependent
truncation, introduced to find a more regular estimate when the noise is significant,
looses the ability to recover f, when its image is observed under ideal conditions.

We shall give more examples illustrating this peculiar behavior of the solutions to
Problem 2.3.3 in the next subsection. But first, let us prove Theorem 2.3.8. To do so,
we first examine the behavior of the projections Mgy -(c) as € goes to zero in the next
two lemmas. The first lemma (Lemma 2.3.9) gives necessary and sufficient conditions
on the sequence 7= {7)}, e to that these projections converge in a weak sense as €
goes to zero. We will be interested in the case where the weak limit operator is Mry, o.
The second lemma (Lemma 2.3.9) refines these conditions, so that in addition, the
sequence M) -y converges strongly to Mry, o on the set: T'(My,).

Lemma 2.3.9. For f € Hy, let {g(e, f)}eso be an arbitrary family of elements in Ha
that satisfy ||g(e, f) — Tf||n, <€, Ve > 0.

1. Vh € Ha, Mgy p)r(e)h converges weakly as € goes to 0 if and only if
VA 3 3(N) such that either (a) or (b) holds, with

(a) Ve € (0,6(N), |lg(e, H)la| > 7,
(b) Ve € (0,6(N)), [lg(e. N)la| < 7.

2. Mgy p)r(c) converges weakly, independently of the choice of f and of the family
g(e, f), as € goes to 0 if and only if Y\ : both (a) and (b) hold, with

(a) 3 §(N) such that Ve € (0,5(N)), Ta(€) > €
(b) ll_I)I(I) T (€) =0

In that case, the weak-limit operator is necessarily Mry .

3. When conditions 2.(a) and 2.(b) above hold, if h(€) converges weakly to h, then
Mgy 5y, h(€) converges weakly to Mrpsoh as € goes to 0.

Proof of Lemma 2.3.9. Let us examine the behavior of My r) -() coordinate by co-
ordinate. Since [My( r).r(oh] , equals either hy or 0, depending on whether or not

Hg(e, DA > 7a(e), it follows that My p),-()(h) will converge weakly as € goes to 0 if
and only if for all coordinates A, one of the following holds:

Either there exists some 6(\) > 0 such that |[g(e, f)]x| > Ta(€) for € < §(X). In this
case, [My(e.p)roh], = ha for e < 8(N).

Or there exists some §()) > 0 such that [[g(e, f)]5] < Ta(e) for € < §(X). In this case,
[Mg(gyf)yT(e)h}A =0fore< (5(/\)
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This proves the first assertion.

Let us now consider how uniform this behavior is in the choice of the family
g(e, f). Since |[g(e, f) — Tf],\} < |lg(e, f) — Tfl|n, < €, the set of values that can be
assumed by |g(e, f)a| is exactly [Tf —e,Tf + e} (take g = Tf + 1By, r € [—¢€,€¢] to
reach all the values in this set). Therefore, for a fixed f, the weak convergence of the
operators My r).+(e), regardless of which sequence g(e, f) is chosen, is equivalent to
putting constraints on the sequence {7(¢€), } ea that depend of the coordinates (7f).
These constraints depends on whether (Tf), # 0 or (Tf), = 0:

o If Tf\ # 0 then {|g(e, f)s|} = [ |Tfs| — € |Tfs| + € ]. Therefore, one needs
either: [e < §(A) = 7a(e) > |TAH| + €] or [e < 6(N) = ale) < |Tfi| —¢]. In
the first case, 3y will always be in the kernel of My r).-() once € < §(A). In the
second case () will always in the range of My f)-() once € < §(A).

o If T'f\ = 0 then {|g(e, f)a]} = [0,€]. Therefore one needs [e < 6(A) = 7\(€) > €.
In this case, §y will always be in the kernel of M r) () once € < 6(N).

Note that we do not know beforehand the value of T'f. To be useful, we must derive
requirements on the parameters 7,(¢) that do not depend on f. The minimum re-
quirements on 7(e) ensuring the operators M. y) () converge weakly as € goes to 0
are:

e VA, lim._7y(e) = 0: this ensures that if T'f) # 0, we will have 7y (¢) < |Tf\| — €
for sufficiently small e.

e V), 35(A) such that € < §(\) = 7\(€) < e: this ensures that if Tf\ = 0, we will
have 7, (e) < |Tfx| + € = € for sufficiently small e.

If these conditions are satisfied, the My r) -() converge weakly as € goes to 0 and one
can determine the weak limit:

o for A s.t. Tfy # 0: lim.o7x(€) = 0 hence there exists d(A, f) such that € <
d(A, f) implies 7\(¢) < |Tfx| —e. It follows that: |g(e, f)x| > 7a(€) so that

Mg(gf),T(&)(ﬁ)\) = ﬁ)\ for any 9(67 f) and any € < 5()‘7 f)

o for A s.t. Tfy = 0: € < d(A) implies 7\(e) > €. It follows that if € < d(\), then
lg(€, f)a] > Ta(€) so that My 5 -)(Bx) = 0 for any g(e, f) and any € < 6(A) .

This proves that the weak limit of M s () for any fixed f is My, and finishes the
proof of the second part of Lemma 2.3.9.
Finally, assuming h(e) converges weakly to h, we have VA:

U@@ﬁx@h@%—meh]J (2.21)
= [A@&JLNQUK@‘_h>+(A@&JLNQ“Nhfdh]x’ (2.22)

= [Mwwm&M@_h”J+

U@qw@h—MmﬂﬂJ (2.23)
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The second term vanishes as € goes to 0 because My 1)) converges weakly to Mry o
when the conditions 2.(a) and 2.(b) hold. Moreover, we have seen in the proof of the
second part of the lemma that for any A:

e cither there exists a 0(\) such that My ) - (3x) = 0 for any e < §(X) . In that
[My(e.p),r(c)(h(€) = h) u =0, for e < §(A).

case,

e or there exists a §(A) such that My s ) (6r) = Bx for any € < §(A) . In that
case, “Mg(@f)ﬁ(e)(h(e) —h) ],\) = Hh(e) —h ]/\), for € < §(\); and the weak

convergence of h(e€) to h allows to conclude that ’ [My(e.p)7(e)(h(€) — h) }A‘ — 0

This proves that Mg f) - h(€) converges weakly to Mgy h and finishes the proof of
Lemma 2.3.9. |

We shall now see how to ensure strong convergence of the M, f),T(E)(h) when h is

in Mf.

Lemma 2.3.10. If there exists a value of 6 independent of \ such that Ve < 6 and
VA, Ta(€) > €, then the two following properties hold:

1. For any choice of f and of the family g(e, f):

Ve < 0, My(e.pyre) = MrpoMe. ) = MyeprroMrgo = > {5 B

A st Tfr#0
and |gx|>Tx

2. In particular, for any choice of f € Hi ™" and of the family g(e, f), (i.e. when-
ever M has a unique minimizer fT of the ||.|lwp-norm):

Ve <68, Mye.p)r(e)(Tf1) = Myte, 52 (o) (TS).

Proof of Lemma 2.53.10: The first part of Lemma 2.3.10 results from properties of
orthogonal projections. If P, and P, are two orthogonal projections, then:

P1P2 == P2P1
keI'(P2>CkeI'(P1) & PP, =P

Hence, we already proved My s).7() Mrro = Mo My f) () and

My(e.py e M0 = My(e.pyre) € [(TF)a = 0= |gee.n,] < male)] -

When f and e are fixed, the right hand side holds for any g(e, f) if and only if
[(Tf)» = 0 = € < 7:(€)] which proves the first part of Lemma 2.3.10.

For fin H] ™", fTis well defined and verifies My oTf" = Tf. Applying My(er(e))
to this equality and using the previous result finishes the proof of Lemma 2.3.10. g

With the help of these two lemma, we can now proceed to the
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Proof of Theorem 2.3.8: Let us consider f, in HTW” , i.e. f, verifies that My, has
a unique minimizer || ||lw ,—norm. We note this minimizer fI. We fix the following
sequences: {€,}, such that €, — 0, {g,}, such that Vn, ||g, — Tf,||n, < €n, and

{Vn}n et {7v(€n) }n and {7}, = {7(€,)}n that verify conditions 1 to 4 in Theorem

2.3.8. For every n, we choose a minimizer f} wf I3 wprm: gn O the functional J,(f) = wf

J%,W,p,m,gn( ) = H Mgn Tn (Tf gﬂ)”?-{z + %Nf\”
We want to prove that for any such choice of the €ny Ins Yn, Tn and f) the sequence

[ converges strongly in H; to fI, where fI is the unique minimizer of the ||.|w ,-
norm in the set My = {f : (Tf)r = (Tf,)r, YA s.t. (Tf,)r # 0}. We will also note

d
M, My,

The sequences {| f}|lwp}tn and {||f}||#, }» are uniformly bounded:

By definition of J,, Vn:

15205, < 5-Tn(f2)
so that [If3lI%, < 5

IAIA

—Ju( f1) since f* minimizes J,,.

But:

R
!
I

1M (TF] = 9a) 3, + ll £

IM(TSS = Tfo) 3, + IMa(To = g0)l3e, + 7l £315
IMA(TSS = Tfo) g, + MNP N(TSo — )i, + 7l F2I5
1M (TFS = Tfo) g, + €5 + 1wl 11,

INIA A

where we used [|M,]|?> <1 and ||Tf, — g,|| < €, in the last equation. Hence
1M (T - Tfo)HHz

n

+ 17305 (2.24)

v, 12l <

Since condition 3 and 4 of Theorem 2.3.8 are satisfied, we can use Lemma 2.3.10.(2).
It follows that if n is large enough, M, Tfl = M, Tf,. Moreover, fy—% — 0 by condition

n—oo

2 of Theorem 2.3.8. This proves that {|| f¥]|wp}n» is uniformly bounded.
Since w is bounded below by ¢ > 0 and p < 2, the ||.||3,-norm is bounded above

by ¢ |-’
A= (AP < (216P)7 < (32 AF) = f v, (2.25)
AEA

so that:

1By = DoIAP <Y 2IAPIAPY <D0 AP I flw,) ™ (2:26)

AEA AEA AEA
_1 2— _2
A3 < S L[ 2 lwa] " = 211, (2.27)

Hence, the sequence {f*} is also uniformly bounded in H;.
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fI'is the unique accumulation point of the sequence {f},:

Since it is uniformly bounded in H;, the sequence {f*}, has at least one weakly
convergent subsequence {ff}r. Let us denote its weak limit f We shall now prove
that f = fI.
Since f; is a minimizer of Jj obtained through the iterative algorithm, 2.3.4, it
verifies the fixed point equation: f = Sy, wp (fi + T Mg — T*MT f}). We note
= fi + T Mg, — T* M, T ff, so that ff =S, wp(hi). By definition of the weak
limit, it follows that:

VA, fr = thWA((hk)A)

= ,}1_{20 [(Pa)a] + B[S, ((a)a) = ()] but lim 4wy =0
So, VA, fn = kh—{go [(hi)aA] since Vz, S,(x) o

= lim [(fi + T Mygr, — T* My T f77)]

= fut lim [(T*Myg, — T*MTf))) since (f)x —— fx-

As a result: VA, hm (T*Myge — T*MiT f}),] =
But since ||g —Tfo||H2 < €, then [|T* My (gx —Tfo)||H1 < IT*IMxl€x < €x. This
proves that for all A:

lim [(T*Mkao - T*Mka]:))\] =0. (228)

k—oo

Moreover, from Lemma 2.3.9.(2), we know that {My(Tf,)}, converges weakly to
My, o(Tf,) = Tf,. Together with the continuity of 7, this leads to:

T* M, Tf; kL> T*Tf,. (2.29)

On the other hand, f} converges weakly to f Using the contlnulty of T, we get
Tff —— Tf From Lemma 2.3.9.(3), this also implies {M;Tf}}« k—> My, OTf

and 1t?ollows from the continuity of 7™ that:
T*MTfi —— T" My, oT}. (2.30)
Plugging this last result in Eq. (2.29), we obtain the equality:
T* Mzy, oTf = T*TY, (2.31)

Since Mryy, o(Tf,) = Tf,, the previous equality reduces to: T*MTmeT(f— fo) =0
Taking the scalar product with f — f,, we obtain:

<f_f07 T*MTfo,OT(f_fo)> =0 _ "
& <MTfo,0T(.]i_ fo)s My, oT(f — fo)) =
& [ My, oT(f = fo)ll3, =0
& My, oT(f = f,) =0
& My, oTf =TF,
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We used for the first equality that Myy, o = My o = M7, ,. This proves that 7
belongs to the set M, .

Let us now prove that || ﬂ||w7p < IfHlwp- Because of the weak convergence of the

frto f, for all A, the nonnegative sequence {wy|fy,|}, converges to wx|ﬁ|. One can
then use Fatou’s lemma to obtain:

Ui = 3 Jim (sl b < Jim sl = J 12,
But we proved earlier that limsup,,|| /3113, , < [ f1lI% ,- Therefore, we get:

171, < lim fl, < IFEIS, (2.32)

By definition, fJ is the unique minimizer of the ||.||w ,-norm in M, so this implies
that f = f1.

The conclusion of this paragraph is that f is the only possible accumulation point
of the sequence f.

The sequence {f*}, converges weakly to fI:

We proved that the sequence {f}, is uniformly bounded in the ||.||3;,-norm and that
it has a unique accumulation point: fI. This allows us to conclude that f* converges
weakly to fJ.

The sequence {f*}, converges strongly to f/:

Replacing f by its value f] in (2.32), we get: [|f1I%,, < lima oo [ £2l5, < 15515,
which proves that the sequence {[|f}||% ,}n converges to || 1|3, - We shall see now
that the two results we obtained so far:

fi —— I (2.33)
Vilws ——= 1l (2.31)

imply the strong convergence of the sequence {f*}, to fI. (This argument closely
follows [16].)
Let us prove that {||f]|3, }n converges to || f]|+,. We have:

520 — 30 = S0 = 1 P) [ |l = 1P (@35)
A A

Writing 2? = (:cp)% and using the derivability of z — x%, one can bound the last
term:

* * 21 2_q «
a2 = 1P < 2 max{(1fm)? ™ ()77 |1l = 17,07 | (2:36)
< 2 max{If P UL |1l = 1) (2.37)
< 2 max{Ify ALY [wl - wil | (238)
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We saw in Eq. (2.45) that for any f € Hy and A, € A |fy,]| < c%\|\f|\|w7p. Plugging
this into Eq. (2.38) and summing over A, we get:

_2 _ —
15200 — 1B ] < 2675 max{Ez032 WANEEY S [wsl fial — wal sl | (2:20)

).

AEA
Since {||f;ll%,}n converges to | fII%, . for n large enough, max{|| flI%2. I /A1 2} is

bounded by 2| {27, Defining gy, = 2c 75 1122, we get:

W7p’

1200 = 308 | < Gens Snen | wnlfial? = wal 1,17

< Gep.fo ZA(wA‘f;)\|p+w>\‘f;[)\|p_2w>\min{|f:{>\‘7‘f;[)\|}p>

< et (U308 + DI, — 2 50w min{ £, £ 137)
(2.40)

We already know that || fx[|% , — I £&]I%, . we shall see now that the same holds

for the last term in the previous inequality. Let us define the sequence {u,,}, for
each A by w,, = wymin{|f%,|,|fI,|}. The weak convergence of the f* to fI im-
plies that for each A, u,y —— wy|fl,[P. Moreover, for all n, 0 < wu,, < wy|fl,|?

and >, wa|f5,[P = |IfIl%, < oo so that by the dominated convergence theorem,
lim ), upy = >, limu,,. Replacing the u,) and their limits by their value, we
n—oo n—oo
obtain:
Tim > wymind] £y, 1 £ = 115,
By
Hence:

(||| il t U F 0 =2 D~ wamind| £, 1 £ Al}p> — 12, H I =20 30, = O
A

so that by taking the limit as n goes to oo in Eq.(2.40), we can conclude that
17 |7, I HfjHHl-

Using the identity || 2 — fIllw, = | fille+ 1320 —2(f, f1), this last result combined
with the weak convergence of the f* to fI proves that the sequence {f*}, converges
strongly in H; to fi. [

Note that we did not need to assume that each g, is in HlT’W’p to obtain stability. It
could very well be that the functional J., w p r..g, has several minimizers, in that case,
depending on the choice of the starting element for the iterative algorithm 2.3.4, the
element f* might have different values. As a result, the sequence {f}}, is not fixed
by the parameters €,, v,, 7, and g,. However no matter which of these sequences f
we consider, it will converge strongly to fJ.
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2.3.4 Example

We give here an example where the operator T is a multiplication and the iterative
algorithms 2.2.4 and 2.3.4 are applied on the same noisy image g., with the same
parameter 7. ¢={©x}rea is the orthonormal basis formed by the Haar wavelet. We
chose 7 = 20, where ¢ is the standard deviation of the noise. The top row of Figure
2.3 shows the original image f (left); the function ¢ corresponding to the operator
T (second column); the image of f under T: g = T(f) = f.t (third column) and
the noisy observation g. (right). Below, the results of iterative algorithms 2.2.4 (on
the left) and 2.3.4 (on the right) are displayed. Although the standard iterative algo-
rithm (2.2.4) yields almost perfect reconstruction in this case, the adaptive projection
algorithm does not recover the object f. Because of the projections, one wavelet coef-
ficient in g, is not taken in account. This prevents the iterative algorithm to properly

inverse the operator T

Figure 2.3: From left to right, top row: original f, multiplication operator ¢, image
g = t.f, noisy observation of the image g.. Bottom row, left: reconstruction with the
standard iterative algorithm; right: reconstruction with adaptive projection.

2.4 Adaptive projections relaxed

Our discussion and example above showed that minimizing the adaptive projection
functional may lead to an undesirable solution in some cases, depending on the oper-
ator T and the data. In this section, we introduce a slight relaxation of the adaptive
projections that we will prove no longer suffers from this inconvenience.



2.4.1 Definition of the relaxed adaptive projections and of
the corresponding iterative algorithm

Definition 2.4.1. Given an orthonormal basis if Ha, B={Fx}ren, an element g in
Hs, a sequence of nonnegative thresholds 7= {T\}xex and a scalar p, M -, is the
map from Hy into itself defined by:

VheHs, Mgru(h)= > mbtp Y. b

A st |gal>7a A st |ga|<Ta

Note that M, ;, is a bounded diagonal operator for any g, 7 and p. It is there-
fore a continuous linear operator. Depending on the parameters g and 7, either
| Mgrull =1or [[Mgr,ll = |pf- In the following, we will restrict p to the inter-
val (0,1] and therefore, we will always have || M., || < 1. Note that M, . is the
adaptive projection defined before: M, ;o = M, ; and that, for any choice of g, 7 and
i # 0, Mg ; , has a bounded linear inverse. The minimization problem now becomes:

Problem 2.4.2. Given a sequence of strictly positive weights w={wy}xen, a sequence
of nonnegative thresholds T={7x}xea, and scalars v, p and p with v >0, 0 < p <1
and 1 < p <2, find:

fr=argmin J, ;- (f) = argmin || Mg ., (Tf = 9) |13, + VI FI5,
feH feH

1
where | fllwy = [Zaea wal (f,02) IP]7 and

Mg ru(h) = Z haBx + 1 Z hGx

A st |ga|>Ta A st |gal<Ta

For a fixed observation g and operator 7', Problem 2.4.2 reduces to a particular
instance of Problem 2.2.1, with the observation ¢’ = Mg, ,(g) and the operator
T" = My, T. Therefore, the iterative algorithm that follows converges strongly to a

minimizer of J, w p -, for any choice of the initial guess.

Algorithm 2.4.3.

{ f° arbitrary
= Spwp (U TIME g = TTM2 TfY) 0> 1

Theorem 2.4.4. LetT be a bounded linear operator from Hy to Ho, with norm strictly
bounded by 1. Fiz p € [1,2], p € (0,1], {ma}reaa sequence of nonnegative numbers
and let Sy, be the shrinkage operator defined by (2.7), where the sequence {w}ea
s uniformly bounded below away from zero, i.e. there 3¢ > 0 s.t. VA € A1 wy > c.
Then the sequence of iterates

fn — S'yw,p (fn—l 4 T* M2

g7T’ILL

g=T"M;_ Tf"Y), n=12...,
with O arbitrarily chosen in Hy, converges strongly to a minimizer of the functional

Ty (f) = Mg ru(Tf = 93, + 1%
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1
where || fllw,y denotes the norm | flws = [Saenwrl (fro2) P17, 1< p <2 and

Mgmu(h) = Z)\ st ga>7a haBx + 1 Z)\ st gal<ma haBx.

If the minimizer f* of Jywpru i unique, (which is guaranteed e.g. by p > 1
or ker(Mg -, T') = {0}), then every sequence of iterates f™ converges strongly to f*,
regardless of the choice of f°.

Proof. As we noticed before:

Jowprurg(f) = [Mgru(Tf =93, + WS,

= Mg T)f = Mgrp 93, + VSl
= J7 p,0,1; T/, /(f) with T’IMgJ,HT, glegmug

Noting that J, w01, 77, ¢(f) is exactly the functional defined in Problem 2.2.1, it
is then sufficient to prove ||77| is strictly smaller than 1 to prove the strong conver-

gence of the iterative algorithm 2.4.3 via Theorem 2.2.5. But |T”| = || Mg, 7| <
I Mg 11T < max{1,|p|}.|T]. Since 0 < p < 1 then || Mg, T| =1 and therefore
Il < 17l < 1. |

2.4.2 Stability

The difference between the relaxed adaptive projection functional J. w -, and the
original adaptive projection functional J. - is that we can now prove the desired
stability result. We have, in analogy to Theorem 2.2.6 the following

Theorem 2.4.5. Assume that T is a bounded operator from Hy to Ho with ||T| < 1
and that the entries in the sequence w= {wy}rea are bounded below uniformly by a
strictly positive number c.

For any g € Hy and any v > 0, 0 < u < 1 and nonnegative sequence T={7y}ren,
define f o prug to be a minimizer of Iy prpg(f). If v = 7(€), 7 = 7(e) and
= p(e) satisfy:

1. 11_{% v(e) =0

62

2. lim — =0
=0 (e)

3. YA €A, lir% 7€) =0
4. YA e A, 6N >0, st: [e<dN)= Ta(e) > €]
5. lin% w(€) = o, with 0 < p, <1

then for any f, such that there is a unique minimizer of the || ||w,—norm in the set

Sfo=Af:Tf =Tfo}:

lim sup ||f f e | =0
e—0 ||9_Tfo||’)-[2<€ v(€),w,p,7(€),u(€); g 1 ,

where fl is the unique element of minimum || |lw,-norm in the set Sy, .
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Note that, if ker 7" = {0}, then the set Sy, reduces to f, itself, so that the algorithm
is regularizing for all element in H;. This ensures that when the noise level converges
to 0, the sequence of estimates we obtain converges to the original object.

The proof of Theorem 2.4.5 is mostly analogous to (in fact a little easier than)
the proof of Theorem 2.3.8. For the sake of completeness, we give the full details of
the first two parts of the proof, indicating by
=

= H
when the argument differs from before. Once we prove that f[ is the unique accu-
mulation point of the sequence {f*},, the proof of weak and strong convergence are
strictly identical and we shall not repeat them.

We start by a lemma that, similarly to Lemma 2.3.9, examines the convergence
of the operators Mg -

Lemma 2.4.6. Suppose that 7 = 7(€) and p = p(e) verify conditions 3, 4 and 5 of
Theorem 2.4.5. Then the two following properties hold:

1. For any h in Ha, Ms(s,f),r(e),u(e)h converges weakly to M%f,O,uo h as e goes to 0.

2. If h(e) converges weakly to h as € goes to 0, then Mgz(gf)ﬁ(e)’“(e)h(e) converges
weakly to M%f,wo h as e goes to 0.

Proof of Lemma 2.4.6: In the proof of Lemma 2.3.9, we have seen that under condi-
tions imposed on 7(€) (conditions 3 and 4 of Theorem 2.4.5), the following happens:

o for A s.t. Tf\ # 0: lim._o7\(€) = 0 hence there exists d(A, f) such that e <
d(A, f) implies 7y(€) < |Tfy| — €. It follows that: |g(e, f)A] > Ta(e).

o for A s.t. Tfy =0: € < 6(\) implies 7\(€) > e. It follows that if € < §(A), then
CYINERNGE

So that in the first case: M;(s,f),r(e),u(e) (Bx) = By for any g(e, f) and any € < §(A, f);
and in the second case: M2, 1) oy . (Br) = p1(€)?By for any g(e, f) and any € < 5(X).
Since p(e) converges to some p, by assumption (condition 5 of Theorem 2.4.5), it
follows that M, ;) () .ol converges to Mz, . h as () goes to 0. This proves the
first part of Lemma 2.4.6.

To prove the second part of Lemma 2.4.6, we use again the splitting trick we used

in 2.3.9.(3):
2 2
(Moo (6) = Mg, b, (2.41)

_ 2 2 2
= | [Mgrt0 (&) = B) + (M, 0 ut0) = Mipou,)h })\’ (242)

2 2 2
= [Mg(s,fw(e),u(e)(h(@—h”A‘+ [(Mg(s,fms),u(e)—MTf,o,u)hh‘ (2.43)

And the same argument as we used in Lemma 2.3.9.(3) allows to conclude. [
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Note, that we did not need to prove this lemma that 0 < u, < 1. Now that the

weak convergence of M? a6, (), () is established, we proceed to the

Proof of Theorem 2.4.5: Let us consider f, in H;, that verifies that Sy, has a unique

minimizer || ||y, norm. We note this minimizer fI. We fix the following sequences:

{éx}n such that e, — 0, {gn}n such that ¥n, [lgn — Tfollrs < €n, and {yn}n =

(e s {tnte “ (e} and {7} {7(e0)}, that verify conditions 1 to 5
in Theorem 2.4.5. For every n, we choose a minimizer f wf o prin: g OF TheE

. def
functional J,(f) = Ty w ,p,m,un;gn(f) = | My, 70, im (Tf - gn)”%g +'7n|||f|”€v,p- We want
to prove that for any such choice of the €,, g,, Yn, tn, 7» and f;, the sequence f*

converges strongly in H; to fi. We will also note M, et My, st -

The sequences {| f|lwp}tn and {||f}||#, }» are uniformly bounded:
By definition of J,, Vn:
17205 5 —In(f3)

1
’Y_
so that [ f7[1%, < %Jn(ﬂ) since f minimizes .J,,.

IN

But: & =
Ta(fD) = IMu(TF] = gu)ll3g, + 7l f2N%
= |Mu(Tfo = gu)ll3, + Wl fil%,,  since Tf] = Tf,
< Ml ANTSo = g3, + Yl £,
< max{L, |[pa|*}.€; + 2l £, since || Tf, — gall < €n
Hence
vn, I fall, < max{1, |u|” }7 + £ - (2.44)
Since fy—i — 0 and p, — o € € (0, 1], this proves that {||f}|lwp}n is uniformly
bounded. = ®H

Moreover, w is bounded below by ¢ > 0 and p < 2, so the ||.||3,-norm is bounded
1
above by ¢ 7 || |lw:

A= (1AP)7 < (2 A7 < (2AP)7 = ¢ Flflwy  (245)

AEA

so that:
£, = SIAPSY DAPIART <3 AP I lwe) ™" (2.46)

A€A A€A A€A
1 2— _2
(KA P 1 O o 4 M o] i (2.47)

Hence, the sequence {f*} is also uniformly bounded in H;.
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fI'is the unique accumulation point of the sequence {f},:

Since it is uniformly bounded in H;, the sequence {f*}, has at least one weakly
convergent subsequence {ff}r. Let us denote its weak limit f We shall now prove
that f = fI.

Since f; is a minimizer of Jj obtained through the iterative algorithm, 2.4.3, it
verifies the fixed point equation: f} = S wp (ff + T*M7g, — T*MZT f). We note
hi = fi+T*Mzgr, — T*MZT ff, so that f} = S, wp(ht). By definition of the weak
limit, it follows that:

YA, fr o= 1im S, ((hi)y)

k—oo

= 1}5130 [(hi)a] + hm [Swy ((Ar)a) — (i)l but ]}LIEOkaA =0
So, VA, fr = leIEO 3N since Vz, S,(x) o

= M [(ff + T Mgy, — T"MET f))]

= ot i (Mg, — TUMRTS)] since () —— Fx.

As a result: V), Jim (T*Mgy, — T*MZT f7),] =0
=
Since [|gx — Tfol| < ex, then [[T*Mg (gx — Tfo)llr. < IIT*([[ M| *ere < max{1, [u|}>.ex.
Since py converges to u, € (0, 1], and € to 0, this proves that for all A:
lim [(T*M;Tf, — T*MPT f})\] = 0. (2.48)

k—o00

From Lemma 2.4.6.(1), we know that the sequence {M?(Tf,)}, converges weakly

to Mi%fo,wo (Tfo) = Tfo. =M
Together with the continuity of 7™, this leads to:

T*Mkak T Tf,. (2.49)
On the other hand, f} converges weakly to f Using the continuity of T', we get
h= N
Lemma 2.4.6.(2) allows then to conclude that M 2Tfk M:%fo o Tf <= ®
and it follows from the continuity of 7™ that:
T*METf; —— . T*MTfO 00 L (2.50)

Plugging this last result in Eq. (2.49), we obtain the equality:
T* M2, o, Tf = T*TF, (2.51)

Note that Mry, 0, is a self adjoint and that Mz  , (Tfo) = Mry, 0,4, (Tfo) = Tfo.
Therefore the previous equality reduces to: T*M%f 0.sto (f— fo) = 0. Taking the

scalar product with f— fo, we obtain:
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=

<.f - f07 T*M%fo,o,,uoT(f - f0)> =0 » ~
& <MTfo,0,uoT(j — fo)y Mrs, 0, T(f — fo)) =0
< [ Mz, 0, T(f — fo)ll3, =0
~ MT’]:(),O,;LOT(f - fo) =0
& T(f—f,) =0 since My, o, is invertible.

& Tf =Tf,

This proves that fvbelongs to the set Sy,. = ®

Let us now prove that || ﬂHWJ, < I fillw.p- Because of the weak convergence of the

f* to f, for all A, the nonnegative sequence {w;|f* \|}n converges to wy|fx]. One can
then use Fatou’s lemma to obtain:

17y = 3 Jmn sl sl < fin 3 sl sl = Y 171,

c=

. 52 .
But we proved earlier that || fx]|%,, < max{L, |u,|}.5= + || fi[l% ,- Therefore, since the

limy, o0 fn = o € (0, 1] and lim,, % =0, we get:

171, < lim [, < IFEIS, (2.52)
S
By definition, f] is the unique minimizer of the ||.|w -norm in Sj,, so this implies

that f = fI.
The conclusion of this paragraph is that f] is the only possible accumulation point
of the sequence f.

The sequence {f*}, converges weakly to fI:

[This is identical to the proof given for Theorem 2.3.8]

The sequence {f*}, converges strongly to fI:

[This is identical to the proof given for Theorem 2.3.8] ]

2.4.3 Example

To illustrate how the relaxation of the adaptive projection works in practice, let
us revisit the example given in subsection 2.3.4. We chose p = .5 and ran the
relaxed iterative algorithm on the data we presented in Figure 2.3. Figure 2.4 shows
the original object we are trying to estimate (top), together with the result of each
method (bottom). As we noticed before, the introduction of adaptive projections in
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the discrepancy term prevents the iterative algorithm 2.3.4 to reconstruct the object.
The bottom left panel of Figure 2.4 shows the “perfect” reconstruction obtained with
the standard iterative algorithm of section 2.2. One can see in the middle panel at the
bottom of the figure that the reconstruction of section 2.3 using adaptive projections
misses one variation. The ability to recover the signal perfectly is regained by using
the relaxed algorithm of section 2.4, as shown in the bottom right panel of Figure
2.4.

Figure 2.4: Example of Fig. 2.3 revisited. Top: original. Bottom, from left to right:
reconstruction with the standard iterative algorithm, reconstruction with adaptive
projections, reconstruction with relaxed adaptive projections.

2.5 Extension to multiple input/outputs

In this section, we discuss the generalization of the iterative algorithm to the case
when one seeks M components (fi, fo, ..., far) from L observations (g1, ¢2,.-.,91)-
We wish to minimize the functional defined in Eq.(2.1), choosing appropriate norms
Il x,, for each component f,,. As before, the norms ||.|x,, are l,-norms of decom-
position coefficients. In all generality, the components f,, (resp. the observations g;)
could belong to different spaces Hilbert H!, (resp. Hf). This would be the case, for
instance, if one were to use this algorithm to register multi-modal data where each
component could have a different format. One then needs to consider M tight frames
" ={pV}rea for m =1,.., M. Even if the components belong to the same Hilbert
space, there is no reason a priori why the most appropriate norms |.| x,, would use the
same tight frame for all m = 1, .., M. Therefore, we will allow not only the exponent
p and the weights w, to depend on m but also the decomposition frame ,:

1

o= [Tl (253)

A€A
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Note that we could introduce some modifications in the discrepancy terms as well, to
tune these to the characteristics of each observation g;, for [ = 1,.., L. For example,
one could use the (relaxed) adaptive projections M ;. As is the case for M = L =1,
this amounts to modifying the operators and the observations g; accordingly. Since
we described in detail how these changes affect the iterative algorithm for M = L =1,
we shall focus here on the changes due to the presence of multiple observations and
multiple components with specific ||.| x,,-norms. Subsection 2.5.1 describes the theo-
retical generalization of the iterative algorithm to the multiple components/multiple
observations case and Subsection 2.5.2 the application to our astrophysical problem.

2.5.1 Generalization of the iterative algorithm

Let us first state the most general problem. Assuming we are given observations g,
that belong to different Hilbert spaces Hy, we wish to estimate the objects f,, in
Hilbert spaces H’ that produced them, knowing that the contribution of object f,,
to observation g¢; is T, ; fm where the T, ; : H!, — H¢ are bounded linear operators.
We estimate the objects f,, by solving the problem:

Problem 2.5.1. Given scalars {Vm }m=1,.m, {pi}i=1,.r and exponents {pm}m=1, m
with vy, >0, pp >0 and 1 < p,, < 2, given in addition a tight frame @™ ={PY }rea

and a sequence of positive weights w™ = {w'}ren for each Hilbert space H.,, for
m=1,...M, find:

L M 9 M
argmin J(f1, fa,..., fu) = ZMHZ Tnafm — ngHO + Z ’Ym|||fm||§<"; ;
=1 m=1 L om=1

fm€HE,

1
Pm ] Pm

where [|flx, = [Zen wal (£, ¢5)

Let us first explain the generalization of the iterative algorithm 2.2.4 needed to
solve Problem 2.5.1, in the case where the p,, are equal.

Constant exponent: p,, =p, Vm

When the exponents p,, are all the same, one can see Problem 2.5.1 as an instance of
Problem 2.2.1 by recasting the Problem in higher dimension. This is done by building
a unique observation space: H' = HS x HS x --- x H$, and a unique object space:

H =Hi x Hi x - x Hi. The standard euclidean norm:

M
wm | 2
m=1

171

iﬁnr for f=(f1, fa---, fu) € H (2.54)

defines 7' as a Hilbert space. We define a particular norm on the Hilbert space H':

o

L % o
lolhe=[ 3 ol for 5= 000 o e B 259

=1
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| . T
Define the embedding operators P, : H:. — H by P,(f) =(0,..., 0, f, 0,...,0).

I8}

a ||.]|x-norm on the object space H' by:

Al

|

(2.56)

mfmw:[ S e [ Pl )y }z[ S ! | o
m=1,...M m=1,...M

AEA AEA

I8}

M M M
T foros fa) = (D2 Tt fons D T fons -0 3 T for) (2.57)
m=1 m=1 m=1
With these definitions, Problem 2.5.1 reduces to Problem 2.2.1 since:
L M ) M
Jfisfoeosbir) = 3o X Tuidm =g+ 2 wlful,  (258)
=1 m=1 Lom=1

Wb du) = | T =g |+ 170, (259

with [y = [ Ll 8l (260

Here the indexes A and m are combined into a single index n and w,, = WY' = vy, Wy
and ®,, = TV = P, (V).

As a result, the iterative algorithm 2.2.4 can be used on the vectorized quantities
(f,g, T, ...) to solve Problem 2.5.1 when the p,, are equal.

Full case: arbitrary p,,

In the case where the p,, depend on m, the vectorization trick does not allow to
conclude right away because || f||x can not be written as a single I, norm. One needs
to go back to the construction of the iterative algorithm 2.2.4 to see how to modify
it. We note @1 the element P, (") of the frame ®. As before, the functional:

J(f) = H Tf-3g ) i + Z@TW, o) (2.61)
m, A
is approximated by the surrogate functional:
7= 7ol |77 - Tal| e -]+ Sl el @62)
m, A

for C > |T'T|. The surrogate functional is again strictly convex and the equa-
tions decouple for each pair (m, \). The minimizer f** is again defined applying the
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operator S, , for each component:
<fT a >ﬁl = SET’ P <<Cd + T*g _ T*T(_l7 (I);n>HZ) (263)

<f*a’ @;n>ﬁi = Sy wl pm <<Ca +T g-T Ta, <I>§”>W_> (2.64)

)

Defining the operator: §m; H - H by:

Z S, oo ( () ) O3 (2.65)
m=1,..,M

AEA
one gets:
=S, (ca + TG - T*Ta) (2.66)

The only difference with what we saw in Section 2.2 is that now, the operator
applied to each coordinate does not have the same value of p anymore. However the
vectorized operator Sy, (with multiple values for p) inherits the properties of the
vectorized operator Sy, (with a single value p) that ensure the strong convergence
of the iterative algorithm obtained by minimizing a sequence of surrogate functionals
as before. (The mathematical definition 2.5.3 follows). That is to say that Sy, is a
non-expansive and asymptotically regular operator, it has at least one fixed point and
verifies two technical lemmas (lemma 3.17 and lemma 3.18 in [16]). These properties
are conserved because these is only a finite number of values p,,.

Hence when ||T'T|| < C, an iterative algorithm that converges strongly to a
solution of Problem 2.5.1 is:

Algorithm 2.5.2.
fO € Hi arbitrary
{ ' = & Sup (CF T g =TT ), n21
Going back to the opiginal observations ¢; and operators 1), ;, the algorithm 2.5.2

in the original spaces H., is
Algorithm 2.5.3.
(O e H!, arbitrary, Vm € [1, M]

Vn>1, Vme[l,M], VAEA:

(fm X)) = lsvmwwpm<< Crn 1"‘ > ol midl — Z Pl mlTrlf Y oy >)QOT

1y 7L =1 7 7L
0 r=1,.,M
with |[T'T| < C
One can express a possible value for C' in terms of upper bounds on the norms
of the combinations of T} T, ;; we won’t do this explicitly for this general case, but
show in the next subsection how to do it for our particular application.

Remark. This approach is a generalization of the method developed in [20] for M =
2, with p; =1 and py, = 2.
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2.5.2 Application to astrophysical data

We present in this section the use of the multiple input/multiple output iterative
algorithm 2.5.3 for our astrophysical problem. The objects g; at hand are images of
a portion of the sky, acquired at different wavelengths. The dominant components
fm in the observations are: the Cosmic Microwave background (fi), the clusters of
galaxies (fy), infrared point sources (f3) and the galactic dust (fy). We are mostly
interested in reconstructing accurately the clusters of galaxies. To do so it is necessary
to consider the other signals, fi, f3 and f4, because at the wavelength we consider
they dominate the clusters’ signal.

The observed images g; all have the same resolution and size and we want to
reconstruct images of the components with the same resolution and size as well.
Hence, in this case, the Hilbert spaces H! and HJ are the same. We have chosen to
embed our input and output images in the Hilbert space H = L*([0, 1] x [0, 1]) with
the canonical norm.

Each image acquired on the telescope is a superposition of the different images we
are trying to estimate that is blurred and contaminated by noise. The blurring oc-
curs because the ideal impulse response of the instrument is not perfect. It is instead
well modeled by the convolution with a function that depends on the observed wave-
length. This function is called a “beam” in astronomy. Moreover, the contribution of
each component depends on the wavelength of observation because of their different
physical characteristics. As a result, the observed images g; can be modeled as:

M
g ="by * [ > i fn ] +m (2.67)
m=1

where * denotes the two-dimensional convolution; a,,; is a scalar; b; is the beam at
wavelength [; and n; models the noise. Sources of noise here are instrumental noise
and other components we overlooked because they are not dominant.

With this method, our estimates of the physical components f;, fs, .... are min-
imizers of the functional 2.5.1, computed via Algorithm 2.5.3. The operators T,
combine the convolution by the beam and the frequency dependence of component

m:
H — H

f = am b f
The beams b; are typically square integrable functions and therefore the T),; are
bounded linear operators. The adjoint of 7}, is:

. H — H

m,l - f o= C_Lm,lgl*f

Tm,l : (268)

where by(z,y) = b(—z, —y) (2.69)

Choice of the parameter C'
The norm |7 T|| can be bounded by noticing that:

[T*T(flu o -7fM)] (z) = ZZ A @y pr (by by * fr) (@) (2.70)

l
=1 r=1
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Computing the Fourier transform of the previous equation, we obtain:

[T*T(fl, .. ~>.fM ] ZZ aml Qr1 P }bl} T’ ) (271)

or, writing it in a matrix form:

TT( )] @) ARG 0 hie
: =A Al ,

{T*T(fl,...,fM)}z(g) 0 oo B2 (©) Far(€)
(2.72)

where A is the M x L matrix with entries a,,;. Noting pB({) the L x L diagonal
matrix with entries p; ‘bl‘z(g), and fixing &, one gets:

ve S|[TT . p] @ <l a1 Y@ @B

Assuming the beams b; are integrable so that supg}l;lf(é’ ) < 00, one can bound the
matrix norm:

VE 14 B A <14 (swppB(E) A'l < swp(afB]*©) 14T (274

Eq. (2.73) can be rewritten:

M

Ve

m=1

2

P70 )] 0] < sup(olil* @) 144) Z\fm | @)

Integrating this last equation in & gives a bound on the norm |7 T ||:

T < sup ([ ©) ) l44°] (2.76)

For our astrophysical problem the beams are Gaussian so the integrability condi-
tion is verified. We used C' = 2||T"T|.

Choice of the norms

We are most interested is the clusters of galaxies map fo. Clusters of galaxies are
rare objects in the sky. They are very compact, typically a few arcminutes wide,
with a peak of intensity in the center and filaments on the outskirts. Because of
their compactness and rarity, the clusters of galaxies are well described by a few
large wavelet coefficients. The I' norm on the wavelet coefficients (which is in fact
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equivalent to the Besov Bi-norm), has proved to be a good a regularization norm for
such signals [8, 10, 44]. Hence, that is what we use to constrain the object fo:

Il =D 1 00 | (2.77)

A€A

where = {@)}renis a tight frame of complex wavelets. We describe in detail in
Chapter 4 Section 4.2 the dual tree complex wavelet transform that is used here.

The Cosmic Microwave Background component, fi, is a smooth and slowly varying
signal. It spreads across the whole sky. Moreover its power spectrum | fi(£)|? is well
studied and can therefore be used to constrain the estimate of f;. This can be done
by adding weights w) to the [2>-norm in wavelet space:

-, =Y wal (- o) P (2.78)

A€A

As is the case for Sobolev spaces, for which one chooses wy = w;; = 27 for appro-
priate ¢, we use weights wy = w,; that depend only on the scale j of the wavelet ¢,
(not on the location k). They are defined as follows:

[ de
Wx = Wik = 2
[ Pue)|750(6)| de

where P;(§) is a template of the power spectrum of the CMB studied by astrophysi-
cists.

The Galaxy Dust is also a smooth and slowly varying signal that spreads across
all sky. Its power spectrum is not as well studied as the CMB, so we investigated the
relevance of different Sobolev type norms to constrain its smoothness. We obtain the
best results by choosing wy = w; ) = 2%, i.e.

e = D> 29100 P (2.80)

A=(j,k)eA

(2.79)

The last signal f3 comes from really small objects that emit in the infrared spec-
trum, called infrared point sources. These point sources are rather rare. Since they
are so small, they appear under the resolution of any image, so that the extent of a
point source is smaller than one single pixel. For this signal it is then natural to stay
in the pixel domain, requiring that the estimate is a sparse as possible:

Ilx, = | fs(pizel)] (2.81)

pizel

Note that one would ideally want to use the {®-norm: mel 0| f5(piwel)|£0- However, the
functional would then not be convex. So, we choose the exponent p to stay as sparse
as possible while keeping the convexity, which is p = 1. (In fact, Donoho has shown,
and used in several papers, that in many cases an ['-constraint is a good proxy for
an L%-bound; see e.g. [22, 23, 24].)
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Choice of the regularizing parameters

The principal source of noise in the astrophysical data we consider is controlled by the
time of exposure to the portion of sky imaged. Astrophysicists therefore customarily
provide, as part of their data, not only the g; but also an estimation of the noise level
0, in the image acquired. When the f,, are close to the truth, the [** discrepancy
term || >, Toifm — gi||* should be of the order of o7. To give equal importance to
each discrepancy term, we set p; = #

Similarly, we chose the parameters 7,, so that the regularization terms || f,.| x,.
have the same order magnitude as each other but also as the discrepancy terms. The
estimation of the order of magnitude of || f,,|| x,, is done numerically using simulations
of each component.

Positivity constraints

The clusters’ signal and the point sources’ signal are positive. We introduce these
constraints using the projection step described in 2.2.4 for these two components.
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Chapter 3

Statistical method

In this section, we present a method of separation of blurred mixtures of components
based on a statistical description of each component to be estimated. This method is
largely inspired by the work of J. Portilla et al. [47]. In that paper, the authors present
a method for deblurring natural images that is based on a statistical description of
the unknown elements constituting the observation, namely, the “true” image and the
noise (the point spread function causing the blurring is supposed to be known). In
that framework, the “true” image is viewed as a realization of a random process F', and
the noise as a realization of another random process N. Consequently, the observation
is a realization of a random process G that is a known function of the previous ones:
G = T(F,N). The description of the characteristics of the two random processes
F and N induces a statistical model for the random process G. In return, given a
particular observation i.e. a particular instance of G, this model gives information
about the plausible instances of ' and N that produced it. Using this information,
one can define a notion of best estimate for the instances of F' and N that produced
the observation in hand, which is to say an estimate of the “true” image and of
the noise given the observation we have. Several standard techniques exist to carry
out these estimations; one can use e.g. a “maximum a posteriori” approach, or a
“maximum likelihood estimator”, etc.... Here, as in [47], we shall use a Bayes least
square estimate, i.e. we estimate the “true” image by computing the maximizer of
the conditional expectation of the process F' given the observation.

Given this framework for estimation, one is left with choosing a model for the
processes F' and N, so that the observation gives a plausible estimate for F' (which is
the estimate of the “true” image). The choices made in [47] are based on knowledge
that has been acquired by studying natural images and their properties. In particular,
they use wavelet expansions: going to wavelet space helps separating the noise from
the “true” image, because the noise energy is spread out across wavelet coefficients
whereas the wavelet transform of a natural image is typically concentrated in a few
large coefficients. The wavelet transformation has another advantage: it has been
observed that the distribution of wavelet coefficients of natural images is not Gaussian;
whereas the noise is typically well modeled by a Gaussian process. Moreover, the
structure present in natural images causes their wavelet coefficients to behave in a
more coherent manner than the noise’s coefficients. For instance, the presence of an
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edge is reflected by relatively large wavelet coefficients, through different scales, at
the location of the edge.

In [47], the authors propose a method that takes advantage of the knowledge we
just described. They chose a particular wavelet transform, the steerable pyramid,
and modeled “neighborhoods” of wavelet coefficients by Gaussian Scale Mixtures
(GSM). These neighborhoods are sets of wavelet coefficients associated with the same
location and that behave in a coherent manner. Modeling the behavior of the wavelet
coefficients in these neighborhoods jointly (instead of each singly) buys power for the
estimation by taking advantage of the coherence present in the “true” image and
absent in the noise. Moreover, the Gaussian Scale Mixture is a family of probability
distributions that can capture the non-Gaussianity of a signal; it has proved to be
useful for modeling the distribution of wavelet coefficients in natural images [60].
Once this model is completely characterized, the authors of [47] compute the Bayes
least square estimate of the “true” image; the use of the GSM model makes this
estimate easy to compute.

We have extended this method to the case of blurred mixtures of components in
order to extract the clusters of galaxies from observed astrophysical data. Although
our components are not natural images, part of the reasoning here still holds. In
particular, the use of neighborhoods of wavelets coefficients becomes crucial. Not all
our components deviate a lot from Gaussianity (indeed the CMB signal is Gaussian
1), therefore, distinguishing the noise from such components solely on the basis of
the marginal distributions can not be done. Consequently, the coherence of wavelets
coefficients in the same neighborhood is essential to make this distinction. Moreover,
some signals (e.g. the clusters of galaxies) are much less intense than others, causing
the amplitude of their wavelet coefficients to be too small to be detected one by one.
Taking advantage of their coherence becomes necessary to lower the intensity thresh-
old for detection of these signals. Note that the (non—)Gaussianity of the different
components has a physical meaning: for example, the deviation from Gaussianity of
the CMB gives astrophysicists an indication on how to understand the Universe. As
the cluster signal is itself highly non—Gaussian, a bad estimation of the cluster signal
“pollutes” the estimated CMB signal, and thus the astrophysical conclusions. There-
fore, careful treatment of the (non—)Gaussianity of these signals is necessary. Using
the Gaussian Mixture Model allows us to do so in a simple and efficient manner since
both Gaussian and non—Gaussian signals can be modeled with the same formalism.

In this chapter, we will present the theoretical aspects of this model illustrated by
some examples. In the first section, we describe in detail the different constituents of
the statistical model of the different signals present in the observations. In particular,
we show how to define neighborhoods of wavelet coefficients, what are Gaussian Scale
Mixture models and what is the resulting model for each component. The second
section discusses the formal derivation of the Bayes least square estimate and its
computation, leaving the problem of the estimation of the different parameters for
section three. Finally, we describe in the last section of this chapter the application
of this method to our astrophysical problem. As we go along, we shall give some
examples to illustrate the theoretical aspects of this method; however most examples
are kept until in Chapter 5, where we juxtapose the results produced by this method
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and by the functional method of Chapter 2, so that the reader can easily compare
them.

3.1 Modelization of the signals

Let us now give more explicits details about the different constituents of the statistical
model of the data.

3.1.1 Neighborhoods of wavelet coefficients

In natural images, although the wavelet transform has the property of decorrelating
coefficients, there exists significant spatial dependencies in the transformed coeffi-
cients: wavelet coefficients centered at the same (or a close) location and scale behave
coherently. This is a consequence of the geometrical properties of such images and
of the spatial localization of wavelets. For example, a vertical edge separating two
smooth regions yields a recognizable pattern in the wavelet transform: all wavelet
coefficients are very small, except those corresponding to a wavelet oriented horizon-
tally and whose support includes the edge. Not only will the horizontal wavelets
centered at the edge yield quite large coefficients, but also the horizontal coefficients
will decay or oscillate in a special manner with the distance to the edge and with the
scale. (In fact, if such a simple vertical discontinuity was located at m = 27(k}, k?),

[ R 0]

(k1, ke) € Z% one could derive the exact values taken by the coefficients < f, go}f,e%t,>

for scales j/ finer than j, centered at locations n' = 27 (K, k2), k' € [k} — K, k! + K].
Here we denoted ¢ *"* the wavelet that is vertically oriented).

Similarly, for our astrophysical problem, the geometrical properties of the different
components can be exploited. For example, clusters of galaxies are spatially localized
structures with a high intensity peak at their center. Their size is of the order of a
couple arcminutes. Hence, at scales j where the width of the wavelet ¢; is a couple of
arcminutes or less, the amplitude of wavelet coefficients should exhibit rather sharp
transitions from very low to very high amplitude at the locations of the clusters.
Moreover, these transitions should be sparsely distributed since the clusters are rare.
This would not happen for the CMB signal (resp. the galaxy dust) for which the
variations are much smoother and the typical scale of variations is more than 10
(resp. 50 ) times bigger. The point sources on the other hand are much less extended
than the clusters and the noise is spread over scale and space. Hence the local behavior
of the wavelet coefficients is particular to each component.

Different approaches have been proposed to take in account the spatial coherence
of wavelet coefficients in order to improve image processing. The zerotree method for
compression [55] and later the hidden Markov model based on wavelet trees for image
denoising [15, 50] both incorporate the spatial dependencies as prior knowledge on the
wavelet tree structure. Other methods are based on local models of the coefficients
that are used either to compute parameters for the denoising [54] or as statistical prior
for estimation of the signal [41, 47]. Most of these methods [55, 15, 50, 54] consider
only the depencies between a wavelet coefficient and its parent (i.e. the coefficient
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centered at the same location but at the next coarser scale). In our problem, the
presence of the blurring will induce depencies on the wavelet coefficients within a
scale as well. So we will use, as in [47, 41], more extended neighborhoods. We
consider the neighborhood of a coefficient f;,7 = < f, gpgﬁ> to be the set that contains
the coefficient itself and its parent, f;_i .7, as well coefficients at the same scale j
and orientation ¢, centered at positions 7', where 7’ belongs to a K —ring of . Using
the notation f; ; » x for the neighborhood of the coefficient f;, 5, this amounts to:

fj,qﬁ,K = {fj—l,q,ﬁ} U {fj,qﬁU n =7+ (i7j)7 (27]) € [[_K’ K]]2} (31)

We note V; ;7 i the set of indexes of wavelet coefficients in the neighborhood f; ;7 k-
Vignx =1 —Laen) YU{(,¢,7), @ =7+ (i,5), (i,5) € [-K K]} (32)

so that £, n x = {fi}iev, .- Note that for K = 0, this reduces to the wavelet coef-
ficient and its parent. For our application, K = 1 is typically sufficient to model the
statistical dependences of the wavelet coefficients of the different components. Taking
the blurring into account, we will extend the size of the neighborhood up to K =3
to obtain a good estimation from the observations. For the sake of conciseness in the
notation, we shall drop the index K indicating the size of the ring (and sometimes
even the wavelet index j, ¢, @) where not necessary, denoting the neighborhood f; ;7 x
by f; .= (or even f). Furthermore, the neighborhoods are ordered so that we describe
them as vectors.

In [55, 15, 50, 41], the behavior of a single wavelet coefficient is described by a
two-state model: a wavelet coefficient is either significant or not. The marginal dis-
tribution of a coefficient is a mixture of two centered Gaussians. One of them has
small variance, this accounts for the high number of very small (i.e. non-significant)
coefficients. The second Gaussian has a large variance, this accounts for the existence
of large (i.e. significant) coefficients, giving more weight to the tail of the distribution
than a single Gaussian would normally have. Because we want to model several com-
ponents, we would like our model to offer the possibility of making a finer description
of the behavior of wavelet coefficients. To do so, we use the Gaussian Scale Mix-
ture model (GSM), also used in [47]. This model is more flexible than the two-state
mixture of Gaussian model, allowing to fit a wide variety of marginal distributions.

3.1.2 Gaussian scale mixtures

Model

We model each neighborhood vector f as a Gaussian scale mixture. That is to say:
the probability distribution of the vector f is the distribution of a product of two

random variables, y/z and u:
dist.

f = Vzu (3.3)

u is a centered Gaussian vector and z is a scalar random variable that takes only
non-negative values. The random variable z, whose distribution we describe later, is
called the multiplier and is independent of u. We shall always normalize z so that its
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expectation is one: E{z} = 1. It follows that the covariance matrix of the Gaussian
vector u is exactly the covariance matrix of the neighborhood vector f:

Cov(f;,f;) = E{fif;} — E{f;}E{f;}

B{(Vz w)(VZ W)} — B{vZ u} E{vZ w}
= E{z}E{u; v;} — B{\/z}’E{u;} F{u,} (uand z are independent)
— Bfu ) (E(=) =1, E{u) = E{w;} = 0)
= E{u; u;} — E{u,;} E{u,} (again E{u;} = E{u,} =0)

Cov(f;,f;) = Cov(u;,uy)

The GSM model is then specified by two parameters: the probability distribution
of the multiplier z, noted p,, and the covariance matrix of f, noted C¢. Let us now
describe how these two parameters affect the properties of the distribution of the
vector f.

Properties of the marginal distributions

From Eq. (3.3), one can see that the marginal distributions of the elements of f (i.e.
the pg,) may have different variances but all have the same shape. The variances of
the marginal distributions are given by the diagonal of the matrix C¢ whereas their
common shape depends on the probability density of the multiplier, p,.

If z is identically 1, then f; = u;, and therefore, the marginal distributions are
Gaussian. By choosing another probability distribution for z, one can shape the
marginal distributions of f to fit a wide range of distributions. In [1], Andrews and
Mallows showed that for any scalar process x whose probability density function f,
is symmetric and verifies:

d\"
(— d_y) fe(y2) >0, for y > 0,

one can find a multiplier z such that the corresponding Gaussian scale mixture has
the same distribution as x. (This is actually also a necessary condition.) In Fig. 3.1,
we plot the Gaussian probability density together with two examples of probability
distributions that can be described by Gaussian scale mixtures: the Laplace distri-
bution (f, = 1e71*l) and the logistic distribution (f, = ﬁ) The probability
densities (f,) are plotted on the left panel of the figure and their logarithm in base 10
(logyo(fz)) on the right panel. These probability densities have been scaled to have
the same variance.

The graphs in Fig. 3.1 highlight two particular features of the marginal distri-
butions that can be tuned using Gaussian scale mixtures. On the one hand, the
behavior of the GSM at the origin can range from very smooth (like the Gaussian or
the logistic distribution) to very “peaked” (like the exponential) This can be seen in
the left panel of Fig. 3.1. On the other hand, a GSM distribution can have a fatter
tail than the Gaussian distribution (see right panel of Fig. 3.1). Similarly, if a signal
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has a very sparse wavelet expansion, most of its wavelet coefficients are small, there-
fore their probability density at the origin is rather peaky; some coefficients, on the
other hand, will be quite large, and therefore the tail of the probability distribution
will be significantly fatter than the Gaussian [60]. These features typically model the
non-Gaussian behavior of wavelet coefficients and we will exploit them later.

0.8
0.6/ I

0.4f

0.2r
gl ~ Gaussian
---- Exponential
0 . — Logistic
-4 -2 0 2 a0 5 0 5

Figure 3.1: Probability density of several scalar Gaussian scale mixtures with the
same variance: the Gaussian distribution, the exponential distribution and the logistic
distribution. Left: the probability densities f,, right: their logarithm log,,(fz).

The example of the logistic distribution also shows that those two features can be
tuned independently from each other: the logistic density is as smooth as the Gaussian
density at the origin but still has heavy tails. At this point, we should mention that
the two properties (behavior at the origin and at the infinities) are exactly the ones
modeled by the two-state Gaussians. However, the probability density of the mixture
of two Gaussians decays as the wider Gaussian, not enabling slower asymptotic decay;
it is smooth at the origin, and it is not differentiable. We hope that the flexibility
of the Gaussian Scale Mixture will enable us to fit the experimental distribution of
the wavelet coefficients of the clusters of galaxies more precisely than what we would
obtain with a mixture of two Gaussians.

Properties of the conditional distributions

As we have just seen, the introduction of the multiplier z in the Gaussian scale mix-
ture gives the possibility to fit a wide variety of marginal distributions. We shall now
see how the multiplier also affects the conditional distributions in the GSM model.
When the GSM is used for neighborhoods of wavelet coefficients, these conditional
distributions, together with the covariance matrices C¢ model the spatial dependen-
cies between the coefficients. We have shown earlier that the covariance matrices of
the vectors f and u are the same. Hence the “averaged” dependencies between two
elements in f is captured in the model by the Gaussian vector u. These depencies
are however further tuned by the multiplier.
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To illustrate this, let us consider several two-dimensional GSM that all have the

identity matrix as their covariance matrix. The GSM model in two-dimensions is

dist.
then: (z1,72) = (VZz ui,\/z uz). Here, 1, T3, u1, us and z are scalar random

variables; x1, T2, u; and uy are centered. The choice of the identity as a covariance
matrix imposes that 1, x2, u; and uy have unit variance; that z; and xo (resp. u
and wuy) are decorrelated; and that the joint density of x1 and %3, p(z, z,), is radial.

Gaussian p(x2|x1) Exponential p(x2|x1)

Cauchy p(x2|xl) Log-uniform p(x 2|x1)

Figure 3.2: Conditional probability density p(xz|x;) of several two-dimensional Gaus-
sian scale mixtures with the same covariance matrix : the Identity matrix. Left to
right, then up and down: the Gaussian distribution, the exponential distribution, the
Cauchy distribution and the log-uniform distribution.

Note that, since u; and uy form a Gaussian vector and are decorrelated, they are
independent whereas x; and x5 are not independent, unless z is identically 1. Hence,
although they have the same covariance matrix, u and f do not need to have the
same conditional distributions. The presence of the multiplier z in the GSM allows
to shape the conditional distribution of z5 given xy, p(zs|z;), differently. In Fig. 3.2,
the conditional distributions p(xs|z1) are plotted for different GSM with the Identity
as a covariance matrix. Each column of a plot represents the conditional probability
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density of x5 given x, for a fixed value of z1. The top left panel shows the conditional
probability in the case where the GSM reduces to a Gaussian vector (z = 1). Since
x1 and x5 are independent in that case, the conditional probability p(zs|z1) is the
same for all values of ;. In the other cases, the multiplier’s distribution is not trivial
and consequently, the conditional probability p(zs|z1) depends on the value of x;.

The non-Gaussian distributions displayed in Fig. 3.2 (top right and bottom left
and right) exhibit a bow-tie shape that has been observed for neighboring wavelet
coefficients in natural images [60]. The characteristics of a bow-tie shape distribu-
tion are: the conditional distribution p(xs|x) is concentrated around zero when the
absolute value of z; is small, but much more spread out for larger values of x;. For
neighborhood of wavelet coefficients, this translates into: if the central coefficient is
very small, its neighbors are typically very small as well; if the central coefficient is
very large, its neighbors can take a much larger set of values.

3.1.3 Resulting model for each component

As we stated in section 2.5.2, our astrophysical problem is to reconstruct several
objects f1, f2, .., fM from noisy and blurred observations of mixtures of them, g', ¢,..,
g%, determined by equation (2.67). (We use in this chapter superscripts for the
indexes of the components and observations, since it makes the notation easier for
the corresponding neighborhoods of wavelet coefficients). Our a priori model for each
object f is that the statistical behavior of the neighborhoods of wavelet coefficients
£ =k can be described by a Gaussian scale mixture.

The physical properties of one component are identical in every direction and in

every spatial location. Therefore, it seems that the modelization of a neighborhood

£ 7 i should depend only on m, K and the scale j, and not on 7 nor ¢, leading to
P dist: 2leu. However, we will need to keep the dependence in orientation

q in the Gaussian vector uj'. Indeed, a neighborhood {7} 7 - contains the parent
coefficient, f™; 7, and a “square” neighborhood of coefficients at the same scale:

g for =m0+ (i, 7), (i,5) € [-K, K]?. Therefore the neighborhood f7" -
is not the rotated version of the neighborhood {7 ;. Moreover, we will need to
order the neighborhoods {7 . ;- into vectors with the same order regardless of the
orientation. For example if K = 1, we will use the order:

fj,q,O,l = (fjqu(_l»_1)7 ijq’(_170)7 ijq’(_171)7 ijq’(o»_1)7 fj,q,(0,0)7 fj7q7(071)7
fijv(lv_l)’ fijv(lvo)’ fjv‘]v(lvl)’ fj_lqu(ovo))'

The first two terms, f;q (—1,-1) and fj 4 (-1,0), always correspond to wavelets that are
each other’s shifts in the vertical direction and therefore their correlation depends on

the orientation ¢ of the wavelet. (Note that this problem would still arise with “circu-

lar” neighborhoods.) We are left with a model of the form: £ dist- 20 Wy g

7,q,7, K
The size K of the neighborhood we have to consider depends on the scale j and on
the component f™ considered. We find in practice that K = 1 is sufficient to encode
the differences between our components. Fixing K = 1, the final a priori model for

each component f is: for a fixed scale j and a fixed orientation ¢, the neighborhoods
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of wavelet coefficients {7 ., for n € 7?2 are independent identically distributed with

the same distribution as the Gaussian scale mixture ﬁ uj’,, where the distribution
of the multiplier 2} is independent of the orientation g.

Note that since the neighborhood of wavelet coefficients overlap for close locations,
the independence can not hold in reality. However, our strategy is to retain from each
estimated neighborhood {7 ;; only the central coefficient [T ;. Therefore, we do not
need to make each estimated neighborhood consistent. Rather, we rely on the fact
that neighborhoods themselves take into account statistical dependencies between
coefficients, to ensure that the estimated coefficients f7 . are consistent. The a priori
model is then determined by the parameters of the Gaussian scale mixtures for each
component ™. each scale j and orientation q. We will describe how to choose these
parameters in detail in section 3.3, but we first explain how the estimation will be

carried out from this model.

3.2 Bayes least square estimate

In this section we explain how to compute the Bayes least square estimates of the
neighborhood of coefficients for each component, given the a priori model we just
described and the forward model for the observations g, ¢2,.., ¢*:

M

g =0t x [ Z am™t fm ] + w! (3.4)

m=1

Here the beam functions o' are known deterministic functions, the frequency depen-
dencies @™ are known scalars. The noise w' is Gaussian and stationary, with known
covariance, and is independent from one observation to the other.

To explain our estimation method, we break it down in several steps. We first
explain the estimation of a single component by denoising a single observation. This
follows closely [47]. Then we explain how to take the blurring into account for a
single component. We derived this adaptation independently from the authors of
the original paper who presented it succinctly in [48]. Here we give more details
on the derivation of Bayes estimate for the problem of deblurring one observation; in
particular we explain the modeling assumptions made in this case. Then in subsection
3.2.3, we extend this method to the observations of several mixture of components,
and show how to separate them.

3.2.1 Denoising one signal

Let us first consider the simple case where we observe one process polluted by noise:
g = f+w. The equations for each single wavelet coefficient and for the neighborhood
of wavelet coefficients read:

Yian = Jign T Wign
gjv‘lvﬁ = fjquﬁ + W]7Q7ﬁ (3'5)
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The Bayes least square estimate of the neighborhood f given the observed neigh-
borhood g is the conditional expectation F{f|g}. The convenience of the represen-
tation of the neighborhood f by a Gaussian scale mixture is that given the multiplier
z, Eq. (3.5) reduces to a sum of Gaussian vectors:

g=+zu+w (3.6)

When z and r are Gaussian vectors, the conditional expectation E{x|r} of x given
r, is:

E{z|r} = Cx,r(Cr)_l(T), (3.7)
where Cx . is the covariance matrix between the vectors x and r. If in addition z and

y are independent and r = z + y, then Cx, = Cxx+y = Cxx +Cxy = Cxx = Cy,
and similarly C, = Cx + Cy. The following result holds whenever z and y are two
independent Gaussian vectors:

E{z|r +y} = Cx(Cx+ Cy) ' (z +v) (3.8)

Going back to Eq. (3.6), and using the independence of the Gaussian vectors u and
w, we obtain that conditioned on the random variable z:

E{ulg,z} = V2 Cu(2Cu+Cy) (), (3.9)

using C,, = Cg, this leads to:
E{f|g,z} = 2C¢(2Cr + Cy) '(g). (3.10)

In other words the Bayes least square estimate of f given the observed vector g and
given the multiplier z, is a Wiener filter applied to g, the neighborhood of wavelet
coefficients of the observation. Integrating the last equation with respect to the
posterior distribution of the multiplier p(z|g), we get the Bayes least square estimate
of f given the observation g:

Biflg) /OOO E{flg, = = 20} p(= = 2|g) dz (3.11)

This estimate is a weighted average of the Wiener filters described in Eq. (3.10). The
weights are determined by the posterior distribution, p(z|g), which is computed via
Bayes rule: " _
pPig|Z = 20)P=\20
PE= 208 = T gle = () 12
Here p(g|z = 2’) is a centered multidimensional Gaussian distribution with covariance
matrix 2’ C¢ + Cy, and p, is the probability distribution of z (which we will describe
in 3.3).

Following this procedure, one gets an estimate E{f;,7|g;,=} for each neighbor-
hood of coefficients f; ;7. One keeps only the central coefficient f;,5 of each of these
estimated vector and reconstructs an estimate of the signal f by inverting the wavelet
transform with these coefficients.
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3.2.2 Deblurring one signal

We consider now the case where the observed signal is a blurred version of the one
object: g = f*b+w. The convolution with the beam b correlates the signal spatially.
As a result, the equations in wavelet space do not decouple any more:

Gian = ([*rb+w, i) (3.13)

Giam = ([*D, ¢in) +wigm (3.14)

9jam = Z fy,qn< i, '*b7¢]n>+qun (3.15)
iq'

Defining b(; gn).(".q.0) BY gm0, qr) = <g03:ﬁ, *b, g0;1-7ﬁ>, we obtain:

9j.qn Z bijam), (0 m) fira i + Wigm (3.16)

7w

Therefore, a particular neighborhood f;/ /7 x contributes to every observed wavelet
coefficient g; 7. In theory, one would obtain the best estimate of f;; ;7 x by using
the information in every wavelet coefficients g;,7. This would be a very difficult
estimation problem, moreover, our final goal is not the estimation of the neighbor-
hoods themselves but rather their central coefficients. So we do not intend to use the
full set of coefficients g;,7 to estimate each neighborhood. Rather, by considering
the properties of the beam and the wavelets, we claim that using only the observed
neighborhood g; , » k yields a sufficiently good estimation of the object neighborhood
f; ¢n.Kx, when K is chosen appropriately.

To see that, let us fix an index j,¢,7 and consider the coefficients bs ¢ 71).(j.q.m)
for all j',¢’, 7. Using the fact that the beam is radially symmetric, we can rewrite
these coefficients:

b(quvﬁ)v(jlvqlvﬁl) = <£p;1"7ﬁ’ * b ) SO;I,H> (317)
b(quvﬁ)v(jlvqlvﬁl) = <S0;]'/7ﬁ’ Y b * (pg,ﬁ (318)
b(j’q)ﬁ)v(]‘,’q/vﬁ/) = <(IO;1’ n' b * ;1 (319)
boamamy = [ 5O Fn(e) hm(€) de (3.20)

Most of these coefficients are really small:

1. If |[j — j/| is large, then, since the wavelet is well localized in frequency, gpr and

goj, _ are concentrated in different frequency bands. Hence [ |gom(£ )H<pj, —(&)]dg
is small and by Eq. (3.20), b(j ¢m),(j%.¢' ) is small.

2. If |¢ — ¢'| is large, then, since oriented wavelet are localized in different parts

—_—

of the frequency plane, again the support of gp‘jﬁ and gp‘;.: — are different. Hence

i \<p]n &) |g0 (&) d¢ is small and by Eq. (3.20), b(jgm),(j.¢m) 1S small.
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3. If |m — 7’| is large, we use the localization in space of both the beam b and the
wavelet to argue that b; 47 (j',¢ ) is small. We define the width of a function h
by the minimal length of the interval I such that: [, |k(z)?|dz > n [ |h(z)?|dz,
fixing n = .9 for example. If |27 — 27| > [b| + (277! + 27'"1)I where [ is the
width of the wavelet and |b| the width of the beam, the support of the functions
gp‘;.,,ﬁ, and bx ], essentially do not intersect, so that by Eq. (3.18), b(j q.m),¢".¢'7)
is small.

Note that since the wavelets we use here are compactly supported in frequency (cf.
section 4.3 in Chapter 4 for the details), we actually have: b qm) rq¢m) = 0 for
j —j'l > 1or|¢g—¢q| > 1 Hence we argue that b ,m) g m) is Dot significant
unless |7 — 5| <1, |¢ — ¢'| £ 1 and |27 — 27| > |b| + (27" +27~1)I. It turns out
that practically, the cross terms b(; 4 ) (j7.¢7) for different orientations ¢’ = ¢g+1 or
¢ = q—1 are negligible as well. As far as the scale j/ = j+1 or j' = j—1 is concerned,
the coefficients b(; 4 n),(j,¢7) are in practice smaller than the coefficients at the same
scale by qm), (j.gm) Unless n=n'.

Putting this together, we obtain that the contribution of a particular wavelet
coefficient f; ;7 is most important in the neighborhood of observed coefficients of the
form g; ,7.r, where K, = 277|b| + . Keeping in mind that we will retain only the
central coefficient f;,» from the estimated neighborhood f; 7k, (where Ky is the
size of the neighborhood needed to capture the spatial dependences of the wavelet
coefficients of f), it is then reasonable to use only the observed neighborhood g; , 7 i
to estimate f; , n x, choosing K = max{ K}, K;}.

Using Eq. (3.16) for each coefficient in the neighborhood g; .7 x, we get:

iank = Bignxtjonx + Rjgnk +Wignx (3.21)

with:
Bjgmrx = {b(jlyquﬁl)y(]éyq%ﬁQ)}(jl7q1,ﬁ1)7(j27q27ﬁ2)evqu’ﬁ‘1{ (3.22)
Rjgmx = Z b(jr,q1.1),(G2.02,72) Jin,qo.m (3.23)

(jlvqlvﬁl) € Vj,q,ﬁ,K
or (j2,92,72) & Vj,q,m K

Here, we have separated the different contributions to the observed neighborhood
gj.qmk into three terms: the contribution of the same neighborhood in the object
Bj ¢ 7,x% ¢ 7 Kk, the contribution of the same neighborhood in the noise w; ;5 x and
the contribution from remaining wavelet coefficients in the object R, ;7 -

As we saw earlier, the coefficients b(;, ¢, 71,),(js,q0.72) that appear in R ; » g are rather
small and therefore the contribution of this term can be considered negligible. We

will consider this term as additional noise and work with the model:
8k = Bjgnk Ligmrx + W;’,q,ﬁ,K (3.24)

where B; ;7 i is the matrix described in Eq. (3.22), w’ is modeled by Gaussian noise
and f; ,» k by a Gaussian scale mixture.
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Dropping the indexes and using Eq. (3.7), we find that the expected value of the
neighborhood f given the observed neighborhood g and the multiplier z is the Wiener
filter:

E{f|g,2} = 2C¢ B*(:BC;y B* + C,,/) 'g (3.25)

The full Bayes least square is again a weighted sum of these filters, with the weights
given by the posterior distribution p(z|g) computed via Eq. (3.12). The prior p(g|z)
also takes the blurring into account: it is a multidimensional Gaussian centered and
with covariance matrix 2B C¢ B*+C,,’. As before, only the central coefficient of each
estimated neighborhood f is used to reconstruct the object f via the inverse wavelet
transform.

With this procedure in mind, we can now explain how to extend this method to
the problem of separation of blurred mixtures of signals.

3.2.3 Separating blurred mixtures of signals

Given the model for the mixture of components in Eq. (3.4), the analog to equation
(3.16) is

M
1 m,l 3l
vie [1, L], Yjam = § : 2 : a b(j,q,ﬁ),(j’,q’ﬁ’ fya +w1qn (3.26)
m=1j'.q',n’

As we argued before, most of the coefficients bl( Jam)(g ) AT very small. Therefore,

the influence of a particular wavelet coefficient of object m,, f;%;, will be mostly
seen in the neighborhood gé.’qﬁ i of each observation g'. However, this time, the
contribution of object m, is not the only significant contribution in gl.7q7ﬁ7 i each
component f potentially gives such a significant contribution. It is then natural

consider the L neighborhoods gé. G for [ = 1,..L in conjunction to estimate at the
same time the M neighborhoods fT K for m = 1,..M. Note that the size K! of

the observed neighborhoods g j 47K we have to consider depends on the beam size
for observation [, whereas the size of the neighborhood f T K that is needed to
describe the spatial coherence of the wavelet coefficients of obJect m, depends on the
object itself. As before, we will choose K to be the maximum of these parameters:
K = maxiep, ], mep,m] 1€ I, K™}. This way, all the neighborhoods we consider for a
fixed scale j have the same size.

Separating again significant from non-significant contributions, we get:

l N
vl e [[1’[’]]’ 8jqmnKx = quK(Z a™ anK> +W] K (3'27)
with:
1 _ 1
BJ)%EK - {b(jlyqlﬁl),(jquﬁz)}(jl,ql,ﬁl),(h,q%ﬁz)evfﬂﬁx (3'28)
M
N/ _ l l 1
Wj7q7ﬁ7K - ijQvﬁvK _'_ Z b(jl?‘]l 7ﬁ1)7(j27q27ﬁ2) (Z am ;’;’L,QQ,EQ) (3‘29)
(J1,91,71) & Vjq,m,K m=1

or (j2,92,m2) & Vj qm,K
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Let us fix the neighborhood V;,mx that we consider. The matrices B! . ; for
I € [1,L] and the frequency dependences a™! for [ € [1,L] and m € [1, M] are

deterministic and known. FEach vector w;.vlqﬁK, for I € [1,L] is supposed to be
Gaussian, centered, with known covariance matrix. Each vector {7 ;; ;- follows the
distribution of a Gaussian scale mixture /2™ u™ for each m in [1, M]. The noise
terms are independent from one observation to another. Moreover, the objects are
also assumed to be independent from each other and from the noise.

To derive the Bayes least square estimate under this model, it is useful to consider
the observed neighborhoods as constituents of a larger vector G:

G = (ggl',q,ﬁ,IO g?,q,ﬁ,[ﬁ R gjl':q,ﬁ,K) (330)
G = (gill,giIQ,...,gfl,gii, ...... ,gi,gé,...), with 4, € V) k (3.31)
Similarly, we stack the noise neighborhoods into a larger vector W:

_ 11 2 9 L L S
W= (w;,w;,,...,w;,wi,,...... Wi, Wi, ), with i € Vjgnk  (3.32)

And the objects neighborhoods into a larger vector F":
F o= (ft fh A MOFMo), with i € Vigmx  (3.33)

REAVY v Jipr Jigo s Jay v Jig

This way, the L equations in Eq. (3.27) can be written as a single matrix equation:

GT =DFT +WwWT (3.34)
where D is the matrix:
1,1 Rl 1,2 ni .. LM p1
a/ Bj7q)ﬁ7K a Bj7q7ﬁ7K a/ Bj7q)ﬁ?K
2,1 P2 2,2 NP2 . 2.M 12
D = a ijqvﬁvK a ijQvﬁvK a Bj7q7ﬁ7K ) (3‘35)
L1 pL L2 pL . LM npL
a Bj7q7ﬁ7K a Bj7q7ﬁ7K a Bj7q7ﬁ7K

where each a™! B} is a block of size L x L, with L = [V; 47 k| the cardinal of the
neighborhood V; ;7 k. Writing the equation in matrix form makes the computation
of the estimator very similar to what we saw in section 3.2.2, with the exception the
the “object” vector I is not a simple scale mixture of Gaussians, but takes in account

M multipliers:
S (VE el VRl
VZ o U (3.36)

di

1%

F ..,\/2’_21@1,\/2_2u2 ...... VM M Mot )

127
d

S
»
=+

F

where U is a Gaussian vector, Z contains each multiplier 2™ repeated [{V; 7k }|
times and o denotes the multiplication coordinate by coordinate.

Using Eq. (3.7), we obtain formally the conditional expectation of F' given the
observation G' and the M multipliers {z™},,:

-1
E{F|G,2', 22, ... M} = Cyp.u D* (D Cyrow D* + CW) G (3.37)
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The Bayes least square estimate of the I’ given the observations is then:
B{F|G} = / B{F|G, 2", 2, MYy p(a), 22, 2M|G) detde? . d=M (3.38)
Rl

The posterior is as usual obtained via Bayes rule:

M
p(zl 22 ZM|G) _ p(G|Zl,22,...,ZM) Hm:lpzm(zm)
Y Jau PG|zt =t 22 = a2, ... M :OZM)Hi\lepzm(O{m)
+
(3.39)
with p.m is the distribution of the multiplier corresponding to the object f™ and the
prior distribution for the observed vector G, p(G|zt, 2%, ..., 2M), is again a multidi-

mensional Gaussian, centered and with covariance matrix C; = (D C . D*+Cw> )

We shall now relate these equations involving the abstract vectors G, F' and W to
our original neighborhoods of wavelet coefficients. Since the noise terms w' for each
observation are independent from each other, the covariance matrix Cvy is block diag-
onal, with L blocks. Each block is the covariance matrix of the {** noise neighborhood

Wé anx: © . . The covariance matrix C, 7 y; is also block diagonal because the
objects f™, m = = 1,.., M are independent from each other. It is constituted by M
blocks, each of Wthh is the covariance matrix of an object neighborhood {7 jam K times
the multiplier 2™, i.e. 2™ Cff,‘(‘l ax (The value 2™ appears here in the covariance ma-
trix because C ., was computed conditionally on the multipliers.) The covariance

matrix Cz is defined by blocks C; = {Cz(l1,12) } 1, 1oep, 2y With:

l17 lg Z Zm mllam l2 leqn K Cf;}’; B] qu K ‘l— 5{[1 12} C 11 L EK (340)
As a result, the prior p(G|zt, 22, 2M) reads:
GC, 'G™
p(G|Zl,Z2,...,ZM) = Wldot(cz) eXp{—f}, (341)

where V' is the cardinal of the neighborhood considered. The conditional expectation
of the neighborhood {7 7 ;- given the multipliers and the observed neighborhoods is:

L
l
BAE |Gzt 22 M =3 e e G Bl (C76T) (3.42)
=

This is integrated with respect to the posterior distribution of the M-uple of multipli-
ers (21, 22, .., 2M) to find the Bayes least square estimate of £, 7 i given the observed
neighborhoods géqﬁ x grouped in the vector G:

m 1 m 1 .2 M —M - m m
E{f] 5 |G} = el /RM Bt nklG 2,27 ... 2" fe 2 H [pam (2™) d2™]
+ m=1

(3.43)
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with .
GC;1GT
(@) = / T [ pen (=) d=") (3.44)
RY

m=1
Note that Eq.(3.43) and (3.44) are M-fold integrations.
In the next section, we describe how we obtain the parameters necessary to com-
pute these estimations. These are the covariance matrices of the objects and noises
neighborhoods, as well as the probability densities for the multipliers.

3.3 Choice of the parameters

As explained in 3.1.3, for a fixed value of K, we assume that for each scale j, orien-
tation ¢, and component f™, the neighborhoods of wavelets coefficients {f% 7 }nez

follow a scale mixture of Gaussian /27" u7,, where the distribution of the multiplier
l

is independent of the orientation. Moreover, we assumed that each noise maps w
is modeled by a stationary process. Therefore neither the covariance matrices nor
the multipliers actually depend on the location . To compute the Bayes estimation
described above, we need: the noise covariances C,. i the component covariances

J,9,0,
ij"& x> and the probability distributions par for I € [1,L], m € [1,M] , for all
scales j and all orientations ¢q. (As we saw in the previous section, the size of the

neighborhood K is the same for all observations and components.)

3.3.1 Covariance matrices of the noise neighborhoods

We assume in this work that the noise term w' for each observation ¢', [ € [1, L], is
Gaussian and stationary. It can be white, and in this case, we assume that we have
an estimate of the standard deviation o for each {. The noise could also be colored,
and in that case, we assume that we know its spatial covariance matrix noted C,
(where C,(z — ') = Cov(w!(Z), w'(T')), for any T in R? and 7 in R?). When the
noise is white, C%,(Z) = (¢')?dz—9. The covariance matrices of the neighborhoods of
the noise terms w' are by definition:

Cu

I = {Cov(w! w!
J,9,0,K

JLqim j2’q2’ﬁ2) }{(jl7‘117ﬁ1)7(j27QZ7ﬁ2)evjz’q70?K}

(3.45)

Suppose we use two-dimensional wavelet transform with () orientations. We note T’
the wavelet transform operator:

L2(R?) — I*(Z° x [1,Q])

T:
h — {<h ) ‘P?ﬁ> }jeZ,ﬁ€Z27q€H17Q]]

(3.46)

Then wh, = (w', ¢i) = {T(w')};qm Since T is linear, then:

]7(17ﬁ

E{uw! ) = {T(E{wl})}jqun (3.47)
Cov(w} why m) = {TCLT} (3.48)

J1,q1,717 7 j2,q2,n2 (41,91,m1),(j2,92,72)
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w' is centered so E{w'} = 0 and therefore E{w! , -} = 0. The covariance terms
can be written in term of scalar products of one wavelet with another, modulated by

the covariance C%;:
l l _ q1 s q2
Cov(wjlmﬁl ) wjz,tn,%) - <90j1,ﬁ1’ Cw1 90j2,ﬁ2>L2(R2) (3-49)
l l _ T =\ (S (= =\ G2 (=I\ J— =/
Cov(wjlmﬁl ’ wjz,tn,%) - / P (I) Cwl(gj - Z )Sojgﬁg (:L’ ) drdr
R2 xR2
When the noise is white, this reduces to:

COV(U)I wl ) — (0l>2 <<pth

] ] q2 >
J1,q1,m10 T j2,q92,n2 110 Pa o L2(R?)

(3.50)

Hence, the covariance matrices of the noise neighborhoods can be computed prior to
computing the estimates, if the wavelet transform, the size of the neighborhoods and
the spatial covariances of the noises are known beforehand.

3.3.2 Covariance matrices of the objects neighborhoods

In the case of the deblurring of a single object, Portilla et al. propose in [47] a
method to estimate the covariance of the single object from the observation itself.
This method is based on the fact that the covariance of a signal h is the inverse
Fourier transform of its spectral power P, = |iz|2, and that the spectral power of
two independent signals is the sum of their spectral powers. Computing the spectral
powers in the case of one blurred component: g = f *b+w, one gets Py = Py + P,.
The spectral power of the convolution b * f is Py = |8|2Pf. One can then estimate
P; knowing P, from the observation and P, for the noise, being careful to regularize
the division by |b[2, as is explained in [47].

We extend this procedure to the case of blurred mixtures of components defined
by Eq. (3.4). The power spectral densities now are:

M
Ve[l L], Pp=[00 [a™[Pm) + Py (3.51)
m=1

Using the method proposed in [47], we can estimate the L linear combinations S' =
SM @™ 2Py If the matrix A = {la™*}mepi vy gep, o) 18 well conditioned, then
we can recover the Ppm using the pseudo-inverse A*A and keeping only the positive
part:

¥m e [1, M], Ppm(€) = [{(A*A)—lA*(Sl(g),S2(g), ..,SL(g))T} L (3.52)

It turns out that this method is not well suited to our astrophysical problem
for several reasons. The frequency dependence of the Galaxy dust (component f%)
and the point sources (component f3) are very close in the range of frequency of
our observed data. (Typically |a(3,1) — a(4,1)] < 107%|a(4,1)|.) Hence we are not
able to separate their power spectrum with this method. Moreover, we made up
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test cases where we considered only the CMB component and the clusters of galaxies
component. In these cases, the method should technically work. (A is then well
conditioned). However in practice, we find that the power spectrum of the clusters
of galaxies is negligible compared to that of the noise and of the CMB. Therefore,
we were not able to estimate it precisely enough with this method. (In fact, it would
most of the time be estimated to 0 by taking the positive part in Eq. (3.52).)

One could imagine that another method of estimation, using only the observations
but in a different way, may be able to solve the problem for the clusters of galaxies.
However, this is not the case for the first problem we pointed out. When the frequency
dependences of two objects are equal, they are formally merged into a single compo-
nent from the point of view of Eq. (3.4). Therefore, one can not distinguish these
components, or any of their features, based solely on the observations ¢' and Eq. (3.4).
A priori knowledge on the components has to be used in addition to the Eq. (3.4),
even for the estimation of the covariance matrices. To our knowledge, there is no
physical quantity well understood by astrophysicists for each of the components we
consider and that we can use to constrain the estimation of the covariance matrices.
Since we have at hand numerical simulations of each of the components we consider,
we use them to compute templates for the covariance matrices of the neighborhoods
of wavelet coefficients Cf;}; o

Note that in practice, the neighborhood covariance matrices (for the components
and also the noise terms), depend on the wavelet used and on the resolution of the
observed data. The dependence on the wavelet is clear since each term in the covari-
ance matrix of a neighborhood involves the wavelet itself (as we saw in Eq. (3.49)).
The resolution of the observed data, i.e. the physical size of a pixel in the observed
image, determines the physical size of the finest scale of the wavelet transform ap-
plied to this image. Therefore, when considering different experimental conditions,
there is no reason why the abstract wavelet scales j of the computed wavelet trans-
form always correspond to the same or similar physical scales. As a consequence, for
each experiment, we will have to recompute the template covariance matrices of the
neighborhoods for each component and for each noise term.

3.3.3 Prior distribution of the multipliers

We shall now describe how to determine the prior distributions of the multipliers
2", The Gaussian scale mixture model imposes only two restrictions on the choice of
the probability distribution p.»» which are: p.» should be supported in R* (that is
z" > 0), and its first moment should be 1 (i.e. E{z]"} =1). Any choice of p. that
satisfies these conditions is technically valid, so we have to consider the properties of
the component f™ to make a choice.

When the component f™ is well modeled by a Gaussian process, the distribution
of its wavelet coefficients at each scale is also Gaussian. Hence the neighborhoods
£ = i are well modeled by Gaussian vectors, in which case the multipliers 2" should
not be used. As a result, if the component f™ is known to be well modeled by a
Gaussian process, the distribution of the multipliers should be set to pem () = dpa=ny
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for each scale j.

In the other cases, i.e. when f™ is not well modeled by a Gaussian process, or
when this information is not available a priori, the choice has to be made on the
basis of the empirical distributions of the wavelet neighborhoods {7 . ;. In order to
obtain the most accurate model, one would ideally want to solve for the distribution
p.m using the empirical joint distribution of the neighborhoods vectors {7 - .. A
maximum likelihood approach to estimate pam for the problem of denoising a natural
image has been proposed in [60]. However the authors argue that this estimation does
not yield better estimates than Jeffrey’s non-informative prior which in this case is a

uniform probability on the logarithm of z:

plogz(u> = 6{szngugvmaz} (353)

Vmaac_Vmin
ie: ]

pz(u) = —V,nllz'i‘/min_ 6{meglogu§Vmaz} a (354)
where V,,,;, and V.. are chosen so that —0o < Viin < Vipaz < 00.

Computing these estimations from the full neighborhoods for each component
f™ would be computationally very costly in our case. Moreover, we find that using
Jeffrey’s prior when the neighborhood can not be considered Gaussian leads to good
first estimates of our components. When we want to refine the model to obtain
a better estimate for the component f™, we choose to fit a prior p,m considering
only the marginal distribution of the central coefficient in the neighborhood 7 7 1.
This amounts to deriving numerically the distribution pam, considering the empirical
distribution of the set of all the wavelet coefficients { f7 - }rez2 4ef1,q) of the template
component f™ at scale j, and the one-dimensional Gaussian scale mixture model:
dist.

vneZ’ Y qe[l,Q], fliz = /2", (3.55)
where u is a scalar Gaussian random variable, centered and of variance (0;-”)2. (Note
that this variance was computed in the previous section as part of the covariance
matrix Cg, ). Let us explain our

ad-hoc procedure for the derivation of the prior

with a formal one-dimensional Gaussian scale mixture: = = \/z u, where all the
random variables are scalar, and u is Gaussian (centered, variance o?). Taking the
logarithm of the absolute values yields

1
log |z| = 3 log z + log |ul, (3.56)
from which we derive the relation between the probability densities piog |z|, Plog» and
DPlog |ul:
Progle| (V) = (P110g2() * Proglul() ) (v) (3.57)
ploglxl(v) = ( 2 plogz(2 ) *ploglul(') )(U) (3-58)
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where * denotes convolution and

6211 »
plog|u|(v> = \/;7@_574' (3‘59)

At this point the author of [60], propose to deconvolve Eq. (3.58) and fit a Gaussian to
the result, thus assuring that the estimated prior is a proper probability distribution.
As a result, they restrict themselves to a log-normal distribution for the multiplier
z. We take a different approach, not fitting a Gaussian to our deconvolved result.
Instead, we use an ad-hoc procedure. We deconvolve Eq. (3.58) regularizing the
procedure in Fourier space:

e (2) e (20
plogz(g) Nt |m(2€)|2

where v > 0. The Fourier inverse transform of the last result gives us a first esti-
mate of pi,g .. We keep its positive part and truncate both tails to get rid of possible
oscillation artifacts leftover from the deconvolution and ensure that E{z} = 1 (i.e.
[ €" prog»(u)du = 1). We find that in the particular case of the galaxy cluster com-
ponent, the prior pig . is not symmetrical. It is not well fitted by a Gaussian and
therefore, the prior p, we obtain is not log-normal (see next section 3.4).

(3.60)

Summary

Given a template of object f™, the procedure we follow to determine the priors pzm
is:

e If f™ is known to be well modeled by a Gaussian, we set pam () = Ogg=1y for
each scale j.

e Otherwise, for each scale j

1. Compute the empirical distribution p, of the set {f7} - }rez2 4ef1,]
2. If p, is close to Gaussian, set pam () = 0gz=1}-

3. If p, is not close to Gaussian and component m does not need to be pre-
cisely estimated, set pzm to Jeffrey’s prior.

4. If p, is not close to Gaussian and component m needs to be precisely
estimated, estimate pem via the ad-hoc procedure described above.

3.4 Application to astrophysical data

For our astrophysical problem, we consider four components: the Cosmic Microwave
Background f!, the clusters of galaxies f?, the infrared point sources f? and the
Galaxy dust f*. The beams b are assumed Gaussians and the noise is white. The
size of the beams b' and level of the noise o' at each frequency of observation are
given to us. We use the steerable pyramid described in detail in Section 4.3 with
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4 orientations. The number of scales considered depends on the resolution of the
observation. The covariance matrices of the noise neighborhoods are computed via
Eq. (3.50). The covariance matrices of the component neighborhoods are estimated
from a template simulation of each component (cf. 3.3.2). The Bayes least square es-
timate of each component is estimated following the procedure detailed in Subsection
3.2.3. To complete the description, we need to make explicit the prior we use for each
component.

Astrophysicists model the Cosmic Microwave Background f! by a Gaussian pro-
cess, therefore we naturally set the priors P! to Dirac probabilities concentrated in
z = 1, for every scale j: P! (u) = Sgu=1}-

The infrared point sources f? are bright points. Their size is typically much
smaller than the resolution of the observations, so that each pixel of the map of
this component is either zero or very bright. Since point sources are isolated as
well, the distribution of the wavelet coefficients of the map f? is mostly concentrated
around zero (in large portions of the maps, there are no point sources) and has large
tails (corresponding to large coefficients where the point sources are located). These
distributions can not be approximated by a Gaussian for any scale j. Since the point
source map is not our first focus, we use Jeffrey’s prior at every scale j for the infrared
point sources component: p.s (u) = m O(Vyin <logu<Vimas} = for all j.

The galactic f3 dust is a smooth and very slow varying signal, we find that it is
reasonable to approximate the distribution of its wavelet coefficients at every scale
by a Gaussian. Therefore, we set p.4 (u) = dpu=13-

Finally the galaxy cluster component f? is the component that we want to recon-
struct most accurately. The clusters of galaxies are compact objects scattered in the
sky, and consequently (same reasoning as for the point sources) the distribution of
their wavelet coefficients for each scale is not well approximated by a Gaussian. In
order to obtain preliminary results for the reconstruction of the clusters of galaxies we
will use Jeffrey’s prior. In an attempt to make a better estimation, we use the ad-hoc
procedure of subsection 3.3.3 to derive an improved prior for the clusters of galaxies.
We display the obtained prior piog. , that we will refer to as the profile, in the top
panel of Figure 3.3 with the dashed line. The Gaussian prior is plotted in plain and
the log-uniform (i.e. Jeffrey’s) prior is the dash dotted line. The bottom left (resp.
right) panel of the figure shows the (resp. logarithm of the ) marginal distribution
P, where x is the corresponding one-dimensional Gaussian scale mixture. The pluses
indicate the experimental data used to estimate the profile. As one can see on the
bottom left panel, both Jeffrey’s prior and our profile tend to overestimate the prob-
ability distribution around |z| = 0. As a consequence the number of low intensity
clusters and their intensity will tend to be underestimated in the maps reconstructed
using these priors. To remedy this effect, we further truncate the profile we obtained
to diminish the weight of small values of log z. The result is called truncated profile
and is displayed in the Figure 3.3 by a dashed and stars curve.
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Figure 3.3: Top: the prior distribution of the logarithm of the multiplier pjog .. Bottom
left: p,, the distribution of x = y/zu. Bottom right, the logarithm of this distribution:
In(p,). Plain: Gaussian prior, x is Gaussian. Dash-dot: p, corresponding to the

Jeffrey’s non-informative prior. Dashed: p, corresponding to the profile computed
from the data. Dashed and stars: p, corresponding to the truncated profile computed

from the data. Plus: experimental distribution p,.
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Chapter 4

Redundant wavelet transforms

In this chapter, we review the transformations that we have utilized to decompose
the signals. As we argued several times in Chapter 2 and Chapter 3, wavelet trans-
formations have properties that we can exploit in both algorithms in order to make
better estimates of the signals. The following properties are of particular interest to
us: the wavelet transforms of the signals we would like to estimate are rather sparse
whereas the wavelet transform of the noise is spread out; the joint statistics of the
wavelet coefficients of the components we would like to extract are well modeled by
Gaussian Scale Mixtures; some particularly useful functional vector spaces can be
characterized by norms computed in wavelet space.

These properties are true for any reasonable wavelet transform. Hence, one could
use any of them interchangeably without altering the arguments we presented in
Chapter 2 and Chapter 3. In this chapter, we wish to give more details about two
transforms that we chose to use: the steerable pyramid was used for the statistical
algorithm presented in Chapter 3; the dual tree complex wavelet transform was used
for the variational functional algorithm presented in Chapter 2.

Both of these are redundant wavelet transforms. (In a redundant transform, the
generating elements can be linearly dependent). Using redundant systems, also called
frames, is usually computationally more intensive and sometimes technically more dif-
ficult (e.g. subsection 2.2.3) than using bases. However there are several advantages
to do so. Orthonormal wavelet transforms are not translation-invariant (because of
the decimation at each scale, the wavelet transform of a translated signal is generally
not the translated version of the wavelet transform of the original signal). This lack of
invariance by translation is known to cause artifacts in signal processing [39, 25]. To
overcome this problem, it has been proposed to use the undecimated wavelet trans-
form, which amounts to using all possible translated wavelet bases in conjunction.
The undecimated wavelet transform is redundant and computationally more inten-
sive than the orthonormal wavelet transform. But it is translation-invariant and its
use improves the quality of the processed signals [12, 35, 25]. Another drawback of the
critically sampled wavelet bases is the lack of invariance by rotation; this too can be
overcome by using redundant transform. Separable wavelet bases have preferred di-
rections along the natural axis and diagonals (in two-dimensions, horizontal, vertical
and diagonal). Allowing the generating family to be redundant makes it possible to
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design a frame that is tuned to more directions. For example, the steerable pyramid
can be designed to be selective to any number of directions [56]. Widening the direc-
tion selectivity is of course only an approximation to rotation invariance, however it
has proved to be beneficial in general image processing problems. Rotation invariance
will be useful to study in detail the shape of the clusters of galaxies and the structure
surrounding them, since these are highly asymmetrical objects. Finally, for the ap-
plication to astrophysical data, it is quite useful to be able to characterize the power
spectrum of the signals in hand in wavelet space. Indeed, the power spectrum is a
quantity well-studied by astrophysicists and therefore, it can be used to incorporate
a priori knowledge on the signals. The rectangular frequency tiling of orthonormal
wavelet transforms does not lend itself easily to the incorporation of knowledge on
the power spectrum of a signal. Once again, more flexibility is given by relaxing the
linear independence condition: redundant systems can be designed to have a spherical
frequency tiling (as is the case of the steerable pyramid), or to approximate it better
than standard wavelet bases (as is the case of the complex wavelet transform).

In order the facilitate the presentation of the complex wavelet transform in Section
4.2 and of the steerable pyramid in section 4.3, we first review rapidly the standard
orthonormal wavelet transform in section 4.1.

4.1 Orthonormal wavelet bases

Although there are other ways to define wavelet bases, we will start here from mul-
tiresolution spaces as in [40]. Subsequently, we define the scaling function ¢ and
wavelet 1), as well as the spatial filters h and g and their Fourier transform the conju-
gate mirror filters m, and m;. (One could actually start from the filters and scaling
function to define the wavelet.)

4.1.1 Multiresolution analysis

Definition 4.1.1. A multiresolution analysis of L*(R) is a sequence of approzimation
vector spaces: {V;}jez that have the following properties:

P1. .- VoCcViCcVoCcViCVy---

P2. UV, =L*R)
P3. NV, ={0}
J

P feVie f(2)eV
P5. feVo=f(-—n)eVy, VneZ

P6. There exists ¢ in Vy such that {¢(- —n),n € Z} in an orthonormal basis of Vj.
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The function ¢ is called the scaling function. Properties P4 and P6 imply that
for any j, the family {¢;.(-) = 22¢(2/ - —n),n € Z} is an orthonormal basis of V;.
Noting h, = (P10 » Pon), and m,(§) = 272 > ez hne™™, properties P1 and P6
imply:

6(35) = V2 Y ha dla —n) (4.1)
nez

(&) =m,(5)o(5) (4.2)
The wavelet can be then defined as the function v such that:

V(%) =v2 Y gudlz—n) (4.3)

0(&) = mi($)e(5) (4.4)

with B
gn = (_1)1_nh1—n (45)
my (€§)= 273 Z gne ™ = e %m, (m—¢) (4.6)

In that case, the vector space spanned by the family of translated versions of 1,
Wy = span{¢o,(-) = ¥(- —n), n € Z}, is the orthogonal supplement of V; in Vi:

1
Vi = Vo@W,. Moreover the {¢y,,, n € Z} are orthogonal to each other. Each approx-
imation space V; of the multiresolution analysis is then similarly decomposed into an

L

orthogonal sum: V; = V,;_1®W;_;, where V}_; is the next coarser approximation space
after V; and W;_; = span{y(2°~! - —n), n € Z} is a detail space. It follows that the
W, span L*(R) and are orthogonal to each other. One can therefore consider differ-

1
ent decompositions of L*(R), either using only the detail spaces W;: L*(R) = @& W,
jez

1
(4.7), or stopping the refinement at a particular scale J,: L*(R) =V}, g?] W; (4.8).
J=2Jdo

The corresponding orthonormal bases are:

{ () =272 (27 - —n) }mez (4.7)
and
{ bsn(s) = 2_%¢(2_J° - =n) ez U { () = 2_%¢(2_j - —n) }issmez (4.8)

Note that the scaling function, the wavelet, the filters h and g and the conjugate
filters m, and m; inherit special properties from the multiresolution setting. For
example, the conjugate filter m, verifies:

[mo(€)1* + [mo(§ +m)[* = 1 ace; (4.9)

and the scaling function integrates to 1 whereas the wavelet integrates to 0.
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The properties of the wavelet can be studied and adjusted by looking at the
filters. The wavelets v;, and scaling functions ¢;, can have many properties that
can be tailored to the application at hand, by adjusting the filter choice. For instance,
one can choose to emphasize their smoothness, their localization in space and/or in
frequency and the number of vanishing moments of 1. Typically, one cannot optimize
all of these simultaneously and some trade-offs have to be made. See e.g. [39, 17].

4.1.2 Computing the wavelet transform in one dimension

For a function f in L*(R), the wavelet decomposition corresponding to (4.7) reads:

F=Y Y 0F tim) tym (4.10)

JEZ nEL

and alternatively, stopping the refinement at scale J, as in (4.8) leads to:

.f = Z( f ) ¢Jo,n > ¢Jo,n + ZZ( f ) Qij,n > 'l/)j,n (411)

neZ JEZ neZ

The relations (4.1), (4.2), (4.3) and (4.4) propagate to the scaling coefficients
ajn = ( f, ¢jn ) and to the wavelet coefficients d;,, = ( f , ¥;, ). Indeed these
coefficients can be rewritten:

G = (fs djn) (4.12)
an = (f) 2—% 6(20 - —n) ) (4.13)
Ajn (f, 23 o(2’ (= 277n) )) (4.14)
G = (f, dio(-—27n)) (4.15)

( ' (4.16)

4.16
and similarly: - '
din = (f *j0)(277n) (4.17)

Here,  denotes the convolution on the real line and ¢(z) = ¥(—z).

Fast wavelet transform in space

Using Eq. (4.1), (4.3), (4.16) and (4.17) gives formulas to compute the scaling coef-
ficients a;,, and the wavelet coefficients d;,, from solely the scaling coefficients at the
finer scale 7 + 1 and the filters h and g¢:

Ajn = (a'j-i—l,~* (QTL) (418)
djﬂ = (aj+17.*g(2n) (419)

([~

Here, x denotes the discrete convolution and }:Ln =h_,, Jn = J_n This means that to
find the wavelet (resp. scaling) coefficients at scale 7, one computes the convolution
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of the scaling coefficients at scale j + 1 with the filter g (resp. k) and keep only the
even entries.

The inverse operation: synthesizing the scaling coefficients at scale j 41 from the
wavelet and scaling coefficients at scale j is just as simple:

a1 = (a5, % )(n) + (dj,. % g)(n) (4.20)

Here, @;2, = a;, and @;2,+1 = 0 (and similarly for d). The wavelet (resp. scaling)
coefficients at scale j 4+ 1 are interleaved with zeros and the result is convolved with
the filter h (resp. g). The sequence of scaling coefficients at scale j + 1 is then the
sum of these two convolutions.

Starting from scaling coefficients at a fine scale Jy, {a,, n}nez, one can recursively
compute the wavelet and scaling coefficients for all scale J, < j < J; using Eq. (4.18)
and (4.19), for any arbitrary J, < J;. Keeping only the wavelet coefficients d;,, for
all scales J, < j < J; and the scaling coefficients a, ,, at the coarsest scale , one can
reconstruct the sequences of scaling coefficients at each scale from J, to J; using Eq.
(4.20).

The forward and inverse transform are both fast to compute since they involve
only discrete convolutions and downsampling (dropping the even entries in Eq.(4.18)
and (4.19) ) or upsampling (adding zeros in Eq. (4.20)) two sequences at a each scale.

Wavelet transform in the frequency plane

One can rewrite Eq.(4.18) and (4.19) using the conjugate filters m, and m;:

@ .(6) = @ (5) mo(5) (4.21)
d; (&) = - (5) m(5) (4.22)
Here, for a sequence {vy, }nez , U denotes the trigonometric series (&) = Y, ., voe™ "¢
From the trigonometric series, one can recover v: v, = U, = % i v()e™m. To

compute the wavelet (resp. scaling) coefficients at scale j with this method, one first
calculates the trigonometric series associated with the scaling coefficients at scale
j + 1, then multiplies it by the conjugate filter m; (resp. m,) and finally dilates the
result by a factor 2. The coefficients at scale j are the Fourier coefficients of the series
obtained. Note that the downsampling is done automatically here by inverting the
dilated trigonometric series.

Similarly the inverse transform that computes the scaling coefficients at scale j+1
from scaling and wavelet coefficients at scale j can be done in Fourier space by noticing
that:

a1 (&) = @5 (28) mo(§) + dj.(26) mi(€) (4.23)

This method is not as fast as the spatial method to compute wavelet transform in

the case where the spatial filters h and g have finite length, i.e. when the wavelet have

compact support in space. However, in the event where the design of the wavelets

has been done in the frequency plane, e.g. when the wavelet have compact support in

frequency, then the spatial filters h and g are infinite and the convolution are easier
to handle by this method.
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The complex wavelet transform that we review in the next section is computed
using spatial filters as in the fast wavelet transform, whereas the steerable pyramid
transform is computed in the frequency plane.

Practical implementation with discrete signals

In practice, one has access only to a finite number of regular samples of the function
f at a finite and possibly very fine scale. One considers these samples {f,}nes to
be the scaling coefficients at the finer scale Jy: f, = ( f, ¢5m ), n € I. The
wavelet transform is computed neither at finer scales than Ji, nor at very coarse
scales (j — —o0), where the extent of the scaling function would be greater than the
support of the sample in hand. Hence, in practice, a coarse scale J, and a fine scale
J1 > J, are naturally defined by the signal in hand.

The wavelet transform consists in the wavelet coefficients at each scale j from Jy
down to J,, i.e. the {d;n.}s,<j<s, ner;, and the scaling coefficients at the coarsest
scale J,, i.e. the {a;, ,}ner,, . Because of the downsampling in Eq.(4.18) and (4.19),
the cardinality of I; is |I;] = |I| 2771, Note that the number of wavelet and scaling
coefficients in the transform is exactly the same as the initial number of samples. This
was bound to happen since the wavelet transform presented here is nothing more than
a change a orthonormal basis in a finite dimensional space.

4.1.3 Separable wavelet transform in higher dimensions

In two or more dimensions, orthonormal wavelet bases are defined by taking the
tensor product of several one-dimensional multiresolution analysis. Let us explain the
two-dimensional case since in higher dimensions, the procedure generalizes without
problems.

Definition 4.1.2. From a multiresolution analysis of L*(R) {V;}jez as defined in
4.1.1, the following tensor product {V ;};ez defined by:

1. Vo=V, ®@V, = {F(x1,22) = f(21)g(2), (f,9) € V*}
2. FEV; & F(2 . 2)eV,

defines multiresolution analysis in L*(R?), i.e. V; C Vip1, U;V; = L*(R?) and
n;V; = {0}.

The approximation space Vi, is then naturally refined into one coarser approx-
imation space V; = V; ® V; and three detail spaces: W; =V; @ W;, W3 = W, @V}
and Wf = W, ® W;. The corresponding orthonormal bases are:

e for Vj-i-l: { ¢j,n1 ($1)¢j7n2(z2)}(n17n2)€l2
o for le'—i-l: { ¢j,n1 (x1)¢j7n2(x2>}(n1,n2)622
e for W]2'+1: { djjml (x1>¢j,n2 (x2>}(n1,n2)622
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o for W2, 0 { 0, (21)0)ny (22) } 01 mo)ez2

Therefore the orthonormal basis considered for L?(IR?) is:

{Djim: (21)@jma(2), Djmy (21)Wjing (X2); Vjm, (21)Pjima (T2), Vs (£1)Vjims (Iz)}(j,m,zzi);i‘;
Note that this is different from taking the tensor product of the one-dimensional
wavelet basis (which would include terms mixing scales: ¥, n, (21)Vj, 00 (22))-

Define d;'-’nhm as the wavelet coefficients corresponding to W; and @, n, the
scaling coefficients. The two-dimensional orthonormal wavelet transform then inherits
a fast algorithm using the spatial filters h and g successively in each direction x; and

ZTo:

Gmms = ( (541, % B) %) (2n1,2n,) (4.25)
Gy = ((ajer. % h)¥G) (201, 2n0) (4.26)
2 = ((@jen,. % 3) % h) (201, 2n) (4.27)
e = ((@je1.. % 5) % 7) (2n1,2n2) (4.28)

Here, % denotes the one-dimensional convolution in the direction x1 computed for
cach value of ny (and vice-versa for *).

As previously in one dimension, one can also consider doing these computations
in the frequency plane using the conjugate filters m, and m; successively for x; and
Zo. The inverse transform is also computed successively in each direction, using the
spatial filters h and g and the complex conjugate filters m, and m; as in Eq.(4.20)
and (4.23).

The two-dimensional separable orthonormal basis presented here is sensitive to
three principal directions corresponding to the detail spaces W', W2 and W3: the
horizontal, the vertical and the diagonal respectively. To remedy this, the complex
wavelet transform combines several separable orthonormal bases that have special
relations together whereas the steerable pyramid is based on the definition of radial
(hence non separable) filters.

4.1.4 Other wavelet bases

Before we turn to these redundant systems, let us mention that there exist other
wavelet families that are not necessarily orthonormal but still form bases of L?(R).
The biorthogonal wavelets can be designed to be symmetric with compact support
[11]. Such a family {4],};n can not form an orthonormal basis. Instead {t;,};n
is a Riesz basis of L*(R) and is associated with a dual family {t?,};,. The first
wavelet is used for analysis whereas the second one is used for the reconstruction.

The orthogonal relation ( },n, w?,,n& = 0; j/0n,n’ ensures perfect reconstruction of any

signal in L?(R).
Wavelet packets are another kind of orthonormal bases one can form starting with
the same procedure as in 4.1.1. The difference is that one is allowed to further refine
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the vector spaces W; by using the filter g, and h, on the detail coefficients d,,. (See
[13, 39] for details.)

Both wavelet packets and biorthogonal wavelets can be extended to higher di-
mensions in a separable manner. Although they have advantages and disadvantages
compared with the orthonormal wavelet transform, they share its lack of invariance by
translation and poor directional selectivity. As mentioned in the introduction of this
chapter, these inconveniences can be bypassed by relaxing the linear independence
conditions and using frames instead of bases.

4.2 Dual tree complex wavelet transform

The complex wavelet transform has been designed originally by Kingsbury [31, 32]
to remedy two principal drawbacks of traditional separable wavelet transforms in
two dimensions: the lack of shift-invariance and the poor directional selectivity. The
complex wavelet transform is a combination of several standard wavelet transforms,
(exactly 2™ of these, where n is the dimension), that have special relations with each
other. The redundancy is 2" and the complexity is exactly 2" times the complexity
of a standard wavelet transform. This makes it just as fast to compute as a standard
wavelet transform for low dimensions, in particular for images (n = 2).

As a consequence of the special relations between the standard transforms used in
the complex transform, the latter is shift invariant in the sense that the reconstruction
obtained from each scale separately is free of aliasing.

Standard wavelet coefficients oscillate rapidly close to sharp transitions. Thresh-
olding techniques with critically sampled wavelet transforms suffer from these oscilla-
tions which cause artifacts in the reconstructions. Another advantage of the complex
wavelet transform is that the modulus of the complex coefficients does not oscillate
as much. Hence, the thresholding operation with complex wavelets as defined in
subsection 2.2.3 causes much less artifacts.

In two dimensions, the complex wavelet transform produces 12 real wavelets.
These can be paired and each pair viewed as the complex and imaginary part of
a complex wavelet. In total, there are 6 complex wavelets, each one selective to a
particular direction. As a consequence, the complex transform also has improved
directional selectivity over standard wavelet transforms. Fig. 4.1 shows the direction
selectivity achieved with the complex transform in two dimensions. The first (resp.
second) row of the figure shows the 6 wavelets that can be viewed as the real (resp.
imaginary) part of the 6 complex wavelet whose magnitude is shown in the last row.

4.2.1 Dual tree complex wavelet transform in one dimension

The complex wavelet transform in one dimension is implemented as two critically
sampled orthonormal wavelet transforms (as described in 4.1.2 ) computed in parallel.
Let us denote ¢!, ¢!, hl, g' (resp. ¢?, 1%, h?, g*) the scaling function, wavelet and
filters relative to the first (resp. second) basis. Kingsbury in [32] showed that one
way to obtain good shift invariance (as defined above) is to view the two real wavelets

69



2D Dual-Tree Complex Wavelets

Figure 4.1: The complex wavelets are selective to 6 directions. First row: real part;
second row: imaginary part; third row: amplitude of the complex wavelet. (This
figure was produced by the Matlab code cplzdual2D_plots.m available at [66].)

Yt and 9? as the real and imaginary part of a complex wavelet, U = ! 4 7 1%, that
has the property of suppressing negative frequencies:

() =0, if £ <0. (4.29)

This happens when the two wavelets 9! and 12 have the special property of being
Hilbert transforms of each other [52, 53], i.e. when their Fourier transform verifies:

V2(€) = —i sign(€) $1(€), EE€R (4.30)

This is also equivalent to designing a filter g; that is a half-sample delayed version of
the filter go:
7=, (431)

Since it is not possible to design such a pair a finite impulse response filters, the
Hilbert transform property has to be approximated. Selesnick [52, 53] has shown
how to best do this within a preassigned filter length. It turns out that his examples
correspond to those of Kingsbury [32] even though they were designed with a different
criterion in mind. We shall use one of these examples implemented in the software
available from Selesnick’s website [66].

Suppose we have two filter banks (h', g') and (h?, g?), that produce wavelets !,
1% that are approximate Hilbert transforms of other. The dual tree complex wavelet
transform of a signal f in one dimension is computed as follows:

1. Compute the wavelet transform of f with the first filter bank (h', g') using
Eq.(4.18), (4.19) to obtain the real wavelets coefficients {d;, }j,<j<s, ner, and
real scaling coefficients {a}; , }ner,, -

2. Compute similarly a wavelet transform of f with (h? g?) to obtain a second
set of real wavelets coefficients {d3,}s,<j<s, ner, and real scaling coefficients

{a?]o,n }WEIJO .
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3. The coefficients of the dual tree complex wavelet transform are the complex
wavelet coefficients {¢;,, = dj,, +1d3,} j,<j<s, ner,, and the real scaling coeffi-

cients {ab07n}nefJo U {a'?]o,n}nEIJO'

The complex wavelet coefficients {c; , }ner ;, can then be modified the same way one
would do with real wavelet coefficients, but keeping the phase constant, as described
in subsection 2.2.3. For example, soft-thresholded coefficients {c’ .} s,<j<, ner; would
be defined the following way:

. o ' i 0 ’ . ' . (‘ij‘ — T).eie lf ‘Cj,n| Z T
if cjn=|cjnl-e'” then c}, =S5 1(cj,) = { 0 if ;] < T (4.32)

And one would reconstruct a signal from these by:
1. Defining the real wavelet coefficients: d7, = R(c},,) and d}, = 3(c},,).

2. Reconstructing fi from the real scaling coefficients {a} ,}ner,, and the real
wavelet coefficients d7,, with the filter bank (h', g") using Eq.(4.20).

3. Reconstructing f, from the real scaling coefficients {a3 ,}ner,, and the real
wavelet coefficients d’7, with the filter bank (h?, g%) using Eq.(4.20).

4. Taking the average: %

Remark. A slight modification has to be done in practice for discrete signals. For a
single real wavelet transform, we considered the samples f,, to be the scaling coeffi-
cients f,, = (f, ¢, n) at the finest scale. This means that the underlying function f is
f=>, fadsnn Inthe case of the dual tree complex wavelet transform, we have two
different scaling functions. Considering the samples f,, as the scaling coefficients at
the finest scale would mean that we are analyzing two different underlying functions:
>on fn®h  and 3o fud3, .. This is clearly not the goal. Special filters have to be
designed for the first stage of the transform to correct for that.

4.2.2 Dual tree complex wavelet transform in two dimensions

As we saw in the precedent section, a standard separable wavelet transform produces
three wavelets: o(x)Y(y), ¥(z)p(y) and ¥ (z)(y). Again, one can compute the
standard separable wavelet transform with each filter bank (h', ¢') and (h?, g?). One
can define six real wavelets 1%/, i = 1,2, j = 1,2, 3, by combining the three wavelets
obtained in each transform the following way:

Vi (zy) = N @)W (y) + ¢ (2) P (y) (4.33)
W y) = PN x)e (y) + P (@)% (y) (4.34)
W a,y) = YN @)Y (y) + P (@)0? (y) (4.35)
WPz y) = ¢ @)Y (y) — ¢*(@)0*(y) (4.36)
VP2 (xy) = PN x)o'(y) — ¥ (2)d7(y) (4.37)
VP a,y) = @)Y (y) — VP (@)Y?(y) (4.38)



Similarly to the six wavelets displayed in the first row of Fig.4.1, each of these six
wavelets is sensitive to one direction. Hence by summing and differencing the wavelets
coefficients from two standard separable wavelet transforms, one gets a system of
redundancy two that has good directional selectivity.

However, these six wavelets cannot be paired and considered as real and imaginary
part of complex wavelets. To do so, one needs to consider two additional real separable
wavelet transforms. Unlike what we described so far, these transforms do not operate
the same way on rows and columns of the signal: one needs to use (h', ') to filter the
rows and (h?, g%) to filter the columns (and conversely). By summing and differencing
the outputs of the four real separable wavelet transforms, one gets the six complex
wavelets displayed in Fig.4.1. They are defined by:

Uhl(z,y) = [o' (@) (y) + > (@) (y)] +1i [o' ()¢ (y) — ¢*(x)' (y)] (4.39)
U2, y) = [0N(2)0' (y) + (@) (y)] +i [0 (2)*(y) — V¥ (2)¢' (y)] (4.40)
U (z,y) = [0 (@)W (y) + 200 (y)] +i [0 (@) (y) — 0 (@)0 (y)] (4.41)
Uz, y) = [0' (@) (y) + o*(2)v' (y)] +i [o'(x)' (y) — ¢* ()¢ (y)] (4.42)
U2, y) = [N (2)¢%(y) + (@) ()] +i [0 (2)e' (y) — V¥ (2)¢7(y)] (4.43)
U (z,y) = [0 (@)% y) + )0 (y)] +i [0 (@)Y (y) — 0 (2)0 (y)] (4.44)

Remark. As in the one-dimensional case, special filters for the first stage of the
transform have to be used and thresholding operations are done on the complex
coefficients.

4.3 Steerable pyramid

Much like the complex wavelet transform, the steerable pyramid is a linear trans-
formation that decomposes two-dimensional signals into subbands localized in scale
and in orientation. But unlike the complex wavelet transform, this tight frame is not
made of a concatenation of bases, but rather is designed from scratch by computing
filters in the Fourier plane that have desired properties. One low-pass filter (like m,),
one high pass filter (like m;) and M oriented filters that are rotated versions of a
unique filter define the steerable pyramid. This corresponds to having one scaling
function and M “wavelets”.

The steerable pyramid transform is translation-invariant and essentially aliasing-
free (the filters are designed to be band-limited so that the sampling rate is above
Nyquist frequency). It can produce an arbitrary number M of orientations and there-
fore can approximate rotation-invariance much better than the standard separable
wavelet transform. Note that, theoretically, the steerability of this transform makes
it totally rotation-invariant: the filters are designed so that the response to any par-
ticular orientation can be computed by linear combinations of the response to the M
original orientations. The steerability of the transform is the reason it was designed
in the first place. However, the transform has proved to be quite efficient and useful
using only the M principal orientations and that is how we shall also use it here.
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4.3.1 Description of the filters, scaling functions and wavelets

In this section, we denote f the Fourier transform of the function f and (r,0) the
polar coordinates. Moreover, we write 7 for the vector (n1,ns). As in the separable
case, the scaling function is indexed by scale j and the location ni: ¢;7. The wavelets
bear an additional index m corresponding to the orientation: 173, . Here, the wavelet
and scaling function at the scale 7 are not sampled at the same rate:

$ia(@ = 2 ¢ (2T -7) (4.45)
Pin(T) = 279" (2T - 2m) (4.46)

The wavelets and scaling function verify scaling relations analogous to Eq. (4.2)
and (4.4) in the separable case, with the addition of orientation for the wavelets:

~

o(2r.0) = ¢(2r) = o(r) L(r) (4.47)

~

Gm(2r,0) = (r) H(r) Gu(6 — =) (4.48)

The low-pass filter L, the high-pass filter H and the oriented filter GGj; are defined as
follows:

L(r) = cos(§logy(F)) oz, x+0, = (4.49)
H(r) = sin(§logy(¥)) o, x+0,. 1 (4.50)
Gu(0) = &}QCOSQ}M_I (4.51)

M2(M—1)]!

They are displayed for M = 4 in Fig.4.2.

L(r) H()

0 4 w2 n 0 w4 w2 T 5W4 3m2 21

Figure 4.2: Left: low pass filter L(r) and high-pass filter H(r). Right: oriented filters
Gu(0 — 57) for M = 4. Dotted curve: m = 0, orientation of the wavelet: 0°; plain
curve: m = 1, orientation of the wavelet: 45°; dash-dotted curve: m = 2, orientation
of the wavelet: 90°. Omitted for clarity of the figure: m = 3, orientation of the
wavelet: 135°.

The scaling function is real, non-negative and radially symmetric and so is its
Fourier transform. The wavelets are real and oriented, their Fourier transform is
real non-negative and symmetric about the origin. Examples of wavelets and scaling
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Figure 4.3: Top row: wavelets in space; Bottom row: wavelets in Fourier plane. First
column: wavelet at a fine scale 7 + 1, centered at location 7, oriented along the
first diagonal. Second column: wavelet at a coarser scale j, centered at location 7y,
oriented along the first diagonal. Third column: wavelet at the same coarser scale j,

centered at location 7o, oriented along the horizontal axis. Fourth column: scaling
function, centered at location 7.

function are displayed in the first row of Fig. 4.3. The second row of the figure shows
their Fourier transform. The wavelets shown have different scale, orientation and
location.

Remark. We use a non-negative version of the oriented filter proposed in [47]:

_ (Mo M-1 :
Gu(0) = BT (2cosb) . The oriented filter we propose ensures that the

wavelets are always real. It is less smooth than the original for M = 2, i.e. when one
considers only two orientations. In that case, our (G5 is only continuous, while the one
used by Portilla et al. is C*°. However, this lack of smoothness was already present in
the low-pass and high-pass filters which are continuous but not differentiable. There-
fore, our choice does not change the overall regularity of the Fourier transforms of the
scaling function and wavelets even for M = 2. Moreover, we verified that the non-
differentiability of the filters does not impact the performances of our reconstruction
algorithm of astrophysical data by designing C'!' (continuously differentiable) filters:

L(r) = cos(3v(r—1)) (4.52)
H(r) = sin(Zv(r—1)) (4.53)
Gu(9) = sin(3 cos(%&)2 ), 0 <17 17 (4.54)
Gu(9) = sin(3 cos(%(e—w)f), feclr—3, m+ ] (4.55)
with v(z) = sin( T )2 do<z<1 + 0z>1 (4.56)

(4.55) does not improve the results, we will only

Since the use of the C* filters (4.52)-
(4.49)-(4.51).

present our work using the filters

4.3.2 Algorithm to compute the steerable pyramid transform

We use the notation: a;z = (f, ¢;n) for the scaling coefficients and dfy; = (f , ¥J5)
for the wavelet coefficients of a function f oriented in the direction §7. Suppose
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we are given the scaling coefficients at scale j + 1: {a;+17}mezz. The algorithm to
compute the coefficients at the coarser scale in the Fourier plane is:

1. Compute the trigonometric series @; 1., (€).
2. Multiply by the high-pass filter H(|¢|), call the result T'(€).

3. For m =0 tom = M — 1, multiply 7" by the rotated oriented filter to obtain:

djm (&) = T(E)Gu(8(€) — 27), where & = [£[e®).
Inverse the trigonometric series to obtain the wavelet coefficients {d; 5 }nez2.

4. Multiply @;,17(€) by the low-pass filter and keep a dilated version: @;(£) =

a1 (5)L(ED

5. Inverse the last trigonometric series to find the scaling coefficients {a;; }rez2-

Given the scaling coefficients at the finest scale, it suffices to repeat this procedure
recursively to find the decomposition of f on the steerable pyramid. Since the scaling
coefficients are kept at only the coarsest scale, step 1 (resp. step 5) can be skipped
at each iteration except the first (resp. last) one.

The reconstruction of the scaling coefficients at scale j from the wavelet and scaling
coefficients at scale j — 1 is carried out using the exact same filters L, H and G,.
Indeed, the steerable pyramid is a tight frame which ensures that the decomposition
and reconstruction are done with the same family:

f:Z<f>¢Jo,ﬁ>¢Jo,ﬁ+ZZZ<fa i) Uine (4.57)

nezZ? m=1 jEZ necZ?

And the filters are real so that:

G41.(8) = a;.(26) L) + > dr (&) L(Ig]) G (0() — 25) (4.58)

Figure 4.4 shows the system diagram corresponding to the decomposition and re-
construction. The steps described above correspond to the shaded block. In practice,
the sample of the function f in hand are again considered as the scaling coefficients
at the finest scale: {ay, z}neze. To avoid aliasing in the practical case of a finite
sample, one needs to use a slightly modified version of the algorithm to compute the
coefficients at scale J; — 1. As pictured in the white block of Fig. 4.4, one does not
do the downsampling for the scaling coefficients at scale J; — 1, which means that:

an—17:(8) = an=(§)L(IE]). (4.59)

75



B,(2w) B: (2w)

B,(2w) B2w)
1 1
1 1
1 1
By (2w) Bu(2w)
Lew) =B (@) Byw) : (L2
s B, BAw)— »
: . B
[ ] 1 | [ ]
. 1 1 .
. B B ()— s
L(w) 2} 2 HL( o) s

Figure 4.4: System diagram for the decomposition and synthesis using the steerable
pyramid. The area inside the dotted line is repeated recursively to obtain the full
transform. Here w = (r,0), and B,,(w) = H(r)G,(0)
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Chapter 5

Application to the extraction of
clusters of galaxies

This chapter is dedicated to the study of the performances of the functional variational
method described in Chapter 2 and the statistical method described in Chapter 3 for
the reconstruction of maps of clusters of galaxies via the detection of their Sunyaev-
Zeldovich signature in the fluctuations of the Cosmic Microwave Background radia-
tion. The mathematical model that describes the observations and the components
have been described in the precedent chapters. In the first section of this chapter,
we explain in greater detail the cosmology of each component and show examples
of simulated observations. The second section describes the tools we use to assess
the quality of the reconstructed maps. In section 5.3, 5.4, and 5.5, we analyze the
performance of both methods under different conditions of observation. The results
we obtained are summarized in section 5.6.

5.1 Description of the signals

5.1.1 Clusters of galaxies

Stars are usually found in dense collections rather than isolated. A collection of stars
(ten millions to one trillion), together with interstellar gas, dust, and dark matter,
all being held together by gravitational attraction, is called a galaxy. Most galaxies
are several thousand to several hundred thousand light years in diameter. Galaxies
themselves are organized into larger structures. The smaller aggregates of galaxies
are called groups of galaxies. Typically, a group of galaxies contains less than fifty
of them. Clusters of galaxies are larger structures containing fifty to thousands of
galaxies, packed into areas of around one megaparsec across (one parsec is around
3.12 light years). Superclusters are even larger structures yet, containing tens of
thousands of galaxies found in groups, in clusters or even isolated. They form the
largest structures identified so far in the universe, and resemble a foam.

Our work focuses on the reconstruction of clusters of galaxies because they may
be used to infer cosmological information such as the Hubble constant via number
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counts and power spectrum analysis of Sunyaev-Zeldovich maps (cf. [38, 36, 27,
3]). This is one of the most important scientific goals of several experiments, now
planned or underway, such as the Sunyaev-Zeldovich Array experiment, the Atacama
Cosmology Telescope SZ survey and the Planck mission. Galaxies in the clusters
travel at velocities in the range of eight hundred to a thousand km.s~! and are
surrounded by hot X-ray emitting gas and large amounts of dark matter. The total
mass of a cluster is typically between 104 and 10'® times the solar mass, with only five
percent (resp. ten) of the mass of a cluster due to the galaxies (resp. the gas), the rest
being dark matter. Reconstructing the clusters of galaxies not an easy task, because
other physical phenomena, such as the Cosmic Microwave Background, obscure our
view of it. However, imaging techniques have now reached a sufficient resolution that
the Sunyaev-Zeldovich signature of the clusters can be extracted for further study.

The Sunyaev-Zeldovich effect (SZ effect in short) is due to high energy electrons in
the galaxy clusters that interact with Cosmic Microwave Background (CMB) photons
traveling from the last scattering surface to Earth. Some high energy of the electrons
is transferred to the low energy photons through the inverse Compton effect. This
modifies the Cosmic Microwave Background temperature and intensity in the direc-
tion of a cluster. The thermal SZ effect induces distortions of Cosmic Microwave
Background spectrum, its frequency dependence is different from that of the CMB
and its amplitude is comparable to the CMB fluctuations. Hence the detection of the
thermal SZ signal will allow to study clusters of galaxies. The right panel of Figure 5.1
and the bottom left panel of Figure 5.2 show examples of thermal Sunyaev-Zeldovich
clusters’ signatures. Note that there is also a kinetic SZ effect due to the bulk motion
of the clusters. This signal is much weaker than the thermal SZ signal and has a fre-
quency dependence similar to that of the Cosmic Microwave Background, therefore
we will not attempt to detect it.

5.1.2 The Cosmic Microwave Background

The Cosmic Microwave Background radiation or CMB is a form of electromagnetic
radiation that fills the whole of the Universe (see Figure 5.1, left panel and Figure 5.2,
top left panel, for two examples). Its existence and properties are considered one of the
major confirmations of the Big Bang theory. According to standard cosmology, the
CMB gives a snapshot of the Universe at the “time of last scattering”, about 400,000
years after the Big Bang, when the Universe became transparent to radiation for the
first time. Since this time, the Universe is expanding, causing the CMB photons to
be redshifted and the radiation to cool with a factor inversely proportional to the
Universe’s scale length.

The CMB spectrum matches closely that of a black body at 2.726 Kelvins and this
radiation has a high degree of isotropy. There are, however, anisotropies and these are
the features that help us understand the Universe. The most pronounced anisotropy is
the dipole anisotropy, which is consistent with the Earth moving relative to the CMB.
A number of experiments, starting with the Cosmic Background Explorer (COBE)
satellite in 1989-1996, have since detected large scale anisotropies other than the
dipole, allowing cosmologists to understand better the structure of the Universe. For
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example, the measurements were able to rule out some theories of cosmic structure
formation like the cosmic strings theory. In 2000, the Boomerang experiment reported
that the highest power fluctuations occur at the scale of one degree. Together with
other cosmological data, these results implied that the geometry of the Universe
is flat. In 2003, the WMAP experiment provided a detailed measurement of the
angular power spectrum down to this scale, tightly constraining various cosmological
parameters. These results are broadly consistent with those expected from cosmic
inflation as well as various other competing theories.

To make further progress, it is known that smaller scale fluctuations than what
was provided by WMAP will have to be analyzed. These very small scale fluctuations
have been previously observed by ground-based interferometers in small regions of
the sky and will be measured systematically over the whole sky by the space mission
Planck, which is to be launched in the next two to three years. These small scales
correspond to the scale of massive galaxy clusters (see Figure 5.1). The Sunyaev-
Zeldovich signature of the clusters is a major factor of the fluctuations of the CMB
at these scales. Therefore, not only will these CMB survey experiments such as
Planck give data to resolve massive clusters, but also the extraction and accurate
reconstruction of these clusters of galaxies will be needed to proceed with the CMB
analysis.

*e
A

Figure 5.1: Simulated 1 degree by 1 degree maps. Left panel: CMB, Right panel: SZ
clusters.

We consider experiments that will provide a map of the sky in the frequency
range 100-600 GHz, that is, where the thermal SZ signal has the biggest amplitude.
In this range, two other physical components will have a significant contribution to
the observed maps: the radio and infrared point sources and the Galaxy dust. We
describe briefly these two components in the next subsection.
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Figure 5.2: Simulated 10 degrees by 10 degrees maps. Top left panel: CMB, top right
panel: the Galaxy dust, bottom left panel: SZ clusters, bottom right panel: infrared
point sources, shown much bigger than their true size for clarity (see text). Note the
difference in scale between Figure 5.1 and 5.2.

5.1.3 Point sources and the Galaxy dust

The Galaxy dust refers to accumulations of gas and dust between stars in our own
galaxy. These form an interstellar cloud that lies in the foreground of our observations
of the sky. The frequency dependence of the galactic dust is significantly different
from that of the CMB and the SZ effect. Similarly to the CMB signal, the galactic
dust spreads across our observations of the whole sky and its fluctuations are smooth
(see Figure 5.2, top right panel for an illustration). Because the Galaxy dust has very
different spatial properties from the SZ signal, we do not expect that its contributions
will limit our reconstruction of the SZ clusters even though they are more faint.

On the other hand, point sources may reveal themselves to be more serious pollu-
tants of our SZ reconstructions. Technically, the term point source could refer to any
source that can be treated as coming from a single point. Here, point sources are of
two types: radio galaxies, brightest in the lowest frequency channel, and dusty galax-
ies, brightest in the highest frequency channel. The radio point source signal is very
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weak in the range of frequencies we analyze and will not be considered here. Dusty
star-forming galaxies at high-redshift shine brightly at submillimeter frequency, and
therefore, will be a potential concern. We show at the bottom right of Figure 5.2 an
example of a simulated map of infrared point sources, each point source being ex-
tended to several pixels to allow visualization. The modeling of these infrared sources,
(number counts, frequency dependences, and spatial correlations) remains uncertain.
Therefore we will first concentrate our efforts on lower frequencies where the point
sources can be ignored to assess the ability of our algorithms to separate the SZ effect
from the CMB variations. Two analyzes, one at higher resolution and the second one
at lower resolution, are made ignoring the point sources and the Galaxy dust. We
incorporate these two components in a third study to complete our analysis.

5.1.4 Frequency dependences

In this section, we describe in more detail how the contribution of each astrophysical
component varies with the frequency of observation. The thermal Sunyaev-Zeldovich
effect causes a change in the CMB temperature in the direction 7:

0TcnB . zrexp(z)+ 1
= -2 22— - 1
TCMB y(n)|i 2 exp(x) — 1 (5 )
with
hv
r = — 5.2
ksTomp (5:2)

where v is the frequency of observation in GHz, h ~ 6.626 x 1073*m? kg s~! is the
Planck constant, kg ~ 1.38 x 107*m?kg s 2K ! is the Boltzmann constant and
Tevp =~ 2.726K is the CMB temperature. The comptonization parameter y(ii) is
the quantity intrinsic to the cluster while the rest of Eq. (5.1) models the frequency
dependence, when the observation is measured in CMB temperature units; that is,
when the observations are normalized so that the frequency dependence of the CMB is
flat. The left panel of Figure 5.3 displays the frequency dependence of the SZ signal in
CMB temperature units (black or dotted line). For reference, the blue or dash dotted
line is the flat frequency dependence of the CMB and it is equal to one in these units.
The thermal SZ effect causes a decrement of the temperature below the characteristic
frequency of 217 GHz, and an increment of the temperature above it. The effect is
illustrated in the first three panels of Figure 5.4, where the location of a particular
cluster is pointed by an arrow labeled with the letter “c” in three observations at
different frequencies. In the top left panel, the presence of the clusters decreases the
intensity measured at 145 GHz. This effect disappears in the top right panel because
at 217 GHz, the frequency dependence of the SZ signal is close to zero. Finally at
265 GHz (middle left panel), the effect is inverted, the presence of the cluster causing
an increase of intensity.

In CMB units, it seems that the larger the frequency of observation, the more
important the SZ contribution is. However this is relative to the CMB frequency
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Figure 5.3: Frequency dependence, left panel in CMB temperature unit, right panel
in flux units. Note that the frequency dependence of point sources (IR) and Galaxy
dust (GD) in the right panel coincide.

dependence itself. In fact, the SZ signal is maximal (resp. minimal) around 350
(resp. 145) GHz (see right panel of Figure 5.3), when the observations are measured
in intensity units. The CMB signal itself reaches its maximum around 217 GHz, where
the clusters’ dependence changes signs (Figure 5.3, right panel, blue dash dotted line).
The plain and dotted curves displaying the frequency dependence of the infrared point
sources and the Galaxy dust lay on top of each other in this figure.

To obtain a complete picture of the contribution of each component to the ob-
servation at each frequency, one should bear in mind that the natural units of each
components are different. The frequency dependences displayed in Figure 5.3 take
these units into account. For example, the CMB signal is measured in Kelvin, which is
the unit used in the left panel (top left panel) of Figure 5.1 (5.2). Its fluctuations are
of the order of 10~ Kelvin. The SZ cluster signal is measured by its comptonization
parameter y, also called y-parameter. The order of magnitude of the y-parameter of
the most massive and brightest clusters is around 10™* as well (right and top right
panels of Figure 5.1 and 5.2). Combining this with the frequency dependences, one
can see that massive clusters yield a signal of amplitude that is comparable to that
of the CMB in the range of frequencies observed. This is not the case for the point
sources signal and the Galaxy dust signal. The natural unit for these signals is the
flux at a particular frequency and although their frequency dependence stays below
the SZ frequency dependence (see Figure 5.3, right panel), those two signals are the
dominant signals at higher frequencies.

Figure 5.4 gives a visual summary of these remarks. Each panel shows a 3.2 by
3.2 degrees maps containing the sum of the contributions of the four signals at a
particular frequency. This result is convolved with a two arcminutes wide beam so
that the contribution of the points sources is wide enough to be visible, without the
artificial blowing up used in Figure 5.2. The middle right panel and bottom panels
show that above 300 GHz, the point sources and the Galaxy dust are dominating
the CMB and SZ signals. In the 100-300 GHz range on the other hand, the CMB
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Figure 5.4: Simulated 3.2 by 3.2 degrees maps of the sum of the contribution of the
CMB, the thermal SZ, the infrared point sources and the Galaxy dust at different
frequencies of observation. Top left: 143 GHz, top right: 217 GHz, middle left: 265
GHz, middle right: 385 GHz, bottom: 600 GHz. One particular cluster of galaxies is
located by the arrow labeled with “c”. One particular infrared point source is located
by the arrow labeled with “i”.
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Figure 5.5: Simulated 3.2 by 3.2 degrees observed maps at different frequencies of
observation. Top left: 143 GHz, top right: 217 GHz, middle left: 265 GHz, middle
right: 385 GHz, bottom: 600 GHz.
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signal is dominant and traces of SZ clusters can be seen, as pointed out by the arrow
labeled with the letter “c”. This suggests that the relevant frequencies of observation
for the extraction and detection of the SZ clusters’ signal are between one hundred
and three hundred GHz. In 2006, the Atacama Cosmology Telescope (ACT) will
begin an SZ survey of galaxy clusters exactly in this range, with three frequencies of
observations: 145 GHz, 217 GHz and 265 GHz. The arrow labeled with the letter
“i” points at the location of a point source in Figure 5.4, showing that even at these
well selected frequencies, very bright point sources do appear. In [28], the authors
quantified potential bias in the reconstruction of the SZ signal due to the point sources
under the conditions of this experiment. For other experiment such as the Planck
mission, larger frequencies (300-600 GHz) will be observed too, giving the possibility
to extract point sources better.

The picture would not be complete without taking into account the beam size at
different frequencies and the noise. Figure 5.5 displays maps corresponding to those
of Figure 5.4, when noise is added and beams of the correct frequency-dependent size
are used. (The beam and noise parameters correspond to those of the experiment
described in Section 5.5).

5.2 How to quantify the results 7

A standard measure of the residual error between two images is the Root Mean
Square (RMS) error: RMS([y, ) = \/ﬁ Dey [L(z,y) — ]2(96,y)}2 where N is the
total number of pixels in the images. The RMS error corresponds to the L? norm of the
difference between the images and is therefore a global measure. The RMS error can
be computed at each scale of a wavelet decomposition (or of another decomposition),
thus exhibiting at which spatial length the two images are more similar or different.
We find that for the Cosmic Microwave Background and the Galaxy dust maps, the
RMS error in pixel space and the RMS error computed by scale, combined with
visual inspection of the maps and residuals give a sufficient idea of the quality of our
reconstructed maps. Indeed, these signals are spread across the whole sky so that a
global measure of error treating each pixel the same way gives a good sense of the
quality of the reconstructions. The point sources and the clusters’ signals, on the
other hand, have to be quantified by other means because they are made of intense
and compact objects surrounded by void. The RMS error, whether in pixel space or
by scale, sums up the contributions from all locations in space, giving a poor idea of
how localized the signals are.

Point sources

The principal features of point sources are their brightness, their sparseness and the
fact that their extent is smaller than the pixel size. The reconstructed maps of point
sources we obtain are rather conservative, and never yield the reconstruction of a point
source where it did not exist. However the maps may be polluted by low intensity
signal which is either white noise and residual of the galaxy dust map. These low
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intensity pollutants are rather easy to separate from the estimated point sources by
thresholding the reconstructed map. Thus, to asses the quality of a reconstructed
point source map, we first examine the level of low intensity residual. The quality of
the estimated point sources is then defined by the number of point sources identified,
the extent of each compact object in the reconstructed map that corresponds to
a point source and the average fraction of the true intensity of the point sources
recovered.

Clusters of galaxies

As for the clusters of galaxies, the task is a little more complicated because clusters
vary dramatically in size, shape and magnitude. Moreover, the clusters are the main
focus of our study, so we need to define carefully how to asses the quality of these
maps. Clusters are compact objects with a peak of intensity at the center, and are
distributed sparsely across the sky. Our strategy to detect them in a map is to isolate
local maxima that are global maxima over a small fixed angle 6. This corresponds
roughly to deciding that the size of the smallest cluster we want to detect is 6. The
order of magnitude of 6; is then the typical size of a cluster, i.e. a few arcminutes.
The exact value of 8; has to be adjusted to the resolution of the data at hand. We
refer to the local maximum as the “center” of a detected cluster.

The studies we present here use simulated data, therefore we can compare the
reconstructed maps to the ground truth. To do so, we apply the detection proce-
dure described above to both the “true” and the reconstructed map. A reconstructed
cluster is then considered as a true detection if its center is closer than a predefined
angle Ay to the center of a cluster in the original map. In some rare cases, the recon-
structed map shows several local maxima (of different intensity) even though there is
only one “true” cluster. In this case, we take only the most salient maxima to make
our quantified quality assessment. The purity of a sample of reconstructed clusters is
then defined as the fraction of clusters in this sample that are true detections.

Our next task is to determine which observable is the most reliable to derive
cosmological parameters. Because of the convolution by the beam and the different
sizes of the clusters, it is likely that the maximal or central value of the y-parameter
is not reliably restored in the reconstructed maps. Instead, we expect that averaged
values are more reliable. Again, the angle 63 over which the y-parameter should
be averaged to find a relevant observable for the clusters has to be tailored to the
experiment at hand. We assess how well the collection of reconstructed average y-
parameters matches the “true” values by linear regression: we fit a line through the
cloud of point formed by the pairs (Yiue, Yreconstructea) I two dimensions. The slope
of this line tells us what the bias is in the averaged y-parameter of the reconstructed
maps compared to the true value. That is to say, if we detect a cluster in the
reconstructed map, with averaged y-parameter value ¥,econstructed; We predict that
the true corresponding averaged y-parameter value is Ypredicted = w , where s
is the slope. We define the spread A of this cloud of points by the average departure
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from the best fitting line, rescaled to the true value, i.e.:

— . __ Yreconstructed
A _ E{ |ytrue ypredzcted| } _ E{ |ytrue s ‘ } (5?))

Ytrue Ytrue

The slope and spread then give us a way to take into account the bias in the re-
constructed map when we predict the number of “true” clusters above a predefined
average y-parameter. The ratio between the number of such clusters predicted from
the reconstructed map to the actual number of such clusters in the original map is
called the completeness.

With these tools to asses the quality of our reconstructions, we can now explain
the analysis of the performances of the methods we proposed in Chapter 2 and 3
in the context of three different experiments. Each of the next three sections of this
chapter is devoted to the description of one experiment and the corresponding results.
Before we go on, let us make two remarks. Firstly, the tools we just have presented
use the fact that we know the original clusters map. This is a way to benchmark
the performances of our algorithms, however these tools would have to be further
developed in the case of real data. Secondly, we quantify general aspects of the
clusters’ reconstruction, such as the number of clusters and their intensity, leaving for
later the quantitative study of finer properties, such as their shape and the structures
surrounding the peak of intensity in a cluster. We nevertheless examine these finer
properties qualitatively.

5.3 ACT: a high resolution experiment

The ACT experiment is a ground-based survey that will collect data on a 100 degree
square area of the sky. ACT stands for the Atacama Cosmology Telescope. This
telescope is designed specifically for high-sensitivity large-area surveys of the sky
requiring dedicated observations for months at a time. It is located in Chile and the
experiment is planned to start in November 2006. The ACT survey will map the
Cosmic Microwave Background anisotropies from angular scales of a degree down to
an arcminute. One of the goals of this survey is to find and study all galaxy clusters in
the portion of sky imaged that have a mass greater than 3.10'* solar masses through
their Sunyaev-Zel’dovich effect. Data will be acquired at 145, 217 and 265 GHz, the
expected beam size and noise level are given in Table 5.1.

As we pointed out in Subsection 5.1.4, the CMB and SZ signals are largely dom-
inant at these frequencies. The contribution of the Galaxy dust is negligible and
this component can be safely disregarded. Point sources may cause some problems,
as was pointed out in [28], however, we choose to leave them out because they are
not so troublesome at the frequencies for ACT. As a consequence, we do not assess
here the quality of the reconstruction of very compact clusters, i.e. clusters smaller
than the beam size which is one arcminute, because they may in practice be confused
with the point sources. Since most massive clusters are larger than the beam, it is
expected that a great number of theses clusters will be resolved. Moreover, at this
resolution, clusters appear aspherical (see Figure 5.10), and a challenge will be to also
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ACT experiment

Frequency of observation Beam size Noise level
v (GHz) fwhm (arcmin) o(uK)
145 1.7 2
217 1.1 3.3
265 0.93 4.7

Table 5.1: The characteristics of the ACT experiment. The RMS detector noise per
full-width-half-maximum pixel, labeled o, is given in thermodynamic temperature
units.

detect and resolve the outskirts of massive clusters. With these goals in mind, we
assess the quality of the reconstruction methods proposed in Chapter 2 and Chapter
3 by using simulations containing the contribution of the CMB and the SZ signals
only at the frequencies and with the beam size and noise specified in table 5.1. The
CMB is simulated as a Gaussian random field using a power spectrum derived from
the best-fitting WMAP parameters [5]. The SZ simulated maps are obtained from
hydrodynamical simulations by Zhang et al. [64]. We analyze 24 sets of simulations,
each of which covers a 1.44 square degree area of the sky. Our study then covers
roughly a one third of the area that will be covered by the true ACT experiment.

To get a rough idea of the level of the noise compared to the contribution of the
CMB and SZ signals in the observations, we display in Figure 5.6 the power spectrum
of each signal at 145 (left panel) and 265 GHz (right panel). The power spectrum of
the CMB and SZ signals are modulated by their frequency dependence. The SZ signal
dominates the CMB at scales coarser than 3 arcminutes. The spectra of the CMB
and SZ signals have to be multiplied by the beam spectrum to obtain the spectral
contribution in the observation. Since the noise level is moderate and the beam size
quite small, the SZ signal is dominant over the noise for scales coarser than two
arcminutes (resp. one arcminute) at 145 (resp. 265) GHz. Therefore, we do expect
that the reconstruction of the SZ will be accurate at least down to the beam size (one
arcminute).

We used both our statistical and functional methods to analyze these data. We
compare four sets of results: the Gaussian, profile and truncated profile prior dis-
tributions for the SZ clusters and our best variational results, using an weighted L2
norm in wavelet space for the CMB and a Besov norm for the clusters. (The CMB
prior is fixed to Gaussian for the statistical method). These different methods were
explained, respectively, in Section 3.4 and 2.5.2.

5.3.1 Reconstructions of the Cosmic Microwave Background

Figure 5.8 shows a typical 1.2 by 1.2 degree CMB map (top panel) together with the
reconstruction obtained from each algorithm. The corresponding residual maps are
in the following figure (Fig. 5.9). Visual inspection of these figures suggests that the
four methods considered yield reconstructions of the CMB maps of the same quality.
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Figure 5.6: Power spectra of the signals contributing to the observation for the ACT
experiment. Left: at 145 GHz, right: at 265 GHz. The horizontal axis indicates
the inverse of the spatial frequency (on a logarithmic scale), so that small numbers
correspond to fine spatial scales and large numbers to coarse spatial scales.

We computed the average over the 24 simulations considered of the RMS in pixel
space and scale by scale. The RMS in pixel space is 1.12 x 10~ for all methods. The
RMS per scale are plotted in Figure 5.7.

Both the residuals maps of Figure 5.9 and the RMS per scale in Figure 5.7 show
that the most errors occur at the 4.4 arcminutes scale, which corresponds to ex-
tended clusters. We notice on Figure 5.7 that the distribution of the error per scale is
slightly different for the functional algorithm than for the statistical ones. The func-
tional method seems to reconstruct more accurately larger scale than 8.9 arcminutes
while the statistical method performs better at smaller scales. The better accuracy
at fine scales for the statistical method may be explained by the use of the neighbor-
hoods which make the estimates more local for the statistical approach than for the
functional approach.

5.3.2 Reconstruction of the SZ clusters

A global quantification of the accuracy of the reconstructed SZ maps is the computa-
tion of the average RMS errors in pixel space and per scale for the 24 simulations we
used. The RMS error for the different reconstructions are similar. The RMS error in
pixel is 8 x 107% for the functional method and the Gaussian prior, and 7.7 x 1076
for the profile and truncated profile priors. The RMS errors per scale are provided in
Figure 5.11 and show the same dichotomy, with the functional method and Gaussian
prior having a slightly larger RMS error at all scales than the profile priors. Most
errors occur at the one arcminute scale, which is the scale of the beam.

The RMS error, per scale or in pixel space, is however not a good indicator of
the quality of the reconstructed maps when quality denotes relevance for deriving
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Figure 5.7: RMS error in the CMB reconstruction, scale by scale. The results of
the Gaussian, profile and truncated profile (noted t. profile) prior lay on top of each
other.

astrophysical constraints. We illustrate this fact by showing a simulated 1.2 by 1.2
degree map together with the reconstructed maps of our four methods in Figure
5.10. The qualitative comments we can make from visual inspection of such maps are
consistent with the quantitative study that follows.

Qualitative inspection of the reconstructed maps.

Visual inspection of the reconstructed maps tells us that the Gaussian prior under-
estimates the central value of the most intense clusters, whereas the non-Gaussian
priors and the functional method perform this task much better. The functional
method resolves more compact clusters better than the three statistical methods but
on the other hand does a poor job at reconstructing the structures in the outskirts
of extended clusters. The Besov norm we chose to constrain the smoothness of the
clusters for the functional algorithm promotes local fast transitions and is therefore
able to pick up 89 % of the central intensity of bright clusters (we explain in the next
subsection how this number is computed). However, the background in the func-
tional reconstruction (see bottom right panel of figure 5.10), shows that structures of
lower intensity reconstructed with this method are rather elongated. As a result the
outskirts of the clusters are not well resolved and it is difficult to assess the extent
of a cluster using this method. The statistical method, on the other hand, is able
to link together smoothly the outskirts of the clusters because it takes into account
the correlations between neighboring wavelet coefficients. The use of the profile prior
for the statistical method induces a substantial improvement in the reconstruction of
the central y-parameter of a cluster compared to the Gaussian prior. However, lower
intensity clusters are better resolved under the Gaussian prior because it imposes
less regularity in the low-intensity range than the profile prior. Suspecting that our
deconvolution method for the prior tends to overweight low values of the multiplier,
we truncated the profile prior. The results obtained with this second profile (middle

90



Original
— —— —

Gaussian

5

T. profile

v

0

o

Profile Functional

-15

Figure 5.8: ACT experiment: CMB. Top: original simulation, other panels: re-
constructions. Middle left: Gaussian, middle right: truncated profile, bottom left:
profile, bottom right: functional. The maps are 1.2 x 1.2 degrees.

91



Figure 5.9: ACT experiment: CMB residuals. Top left: Gaussian, top right: trun-
cated profile, bottom left: profile, bottom right: functional. The maps are 1.2 x 1.2
degrees.
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Figure 5.10: ACT experiment: SZ clusters. Top original simulation, other panels:
reconstructions. Middle left: Gaussian, middle right: truncated profile, bottom left:
profile, bottom right: functional. The maps are 1.2 x 1.2 degrees.
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Figure 5.11: RMS error in the SZ reconstruction, scale by scale.

right panel of Figure 5.10) show a compromise between the initial profile and the
Gaussian prior: the central parameter of bright clusters is as good as for the profile
prior and lower intensity structures are better reconstructed.

Quantitative inspection of the reconstructed maps.

When it comes to infer cosmological parameters from number counts in other wave-
bands (i.e. X-ray or optical), the common practice is to retain only the brightest
clusters which are less affected by selection effects and have a better characterized
scaling function. We adopt here the same strategy with SZ clusters, also motivated
by the fact that they are less affected by reconstruction errors.

Our first task is to determine which observable is the most reliable to derive
cosmological parameters. As we explained in the previous section we have to select
the angle 6. over which the y-parameter should be averaged in the context of this
experiment. We smoothed the original and reconstructed maps over angles ranging
from 0 to 1.8 arcminutes, which is the size of the largest beam. For each such angle we
compute the slope and spread associated to the best fitting line to the clouds of points
defined by the original versus reconstructed averaged y-parameter for each detected
cluster in the original map. Increasing the value of the averaging angle, we find a big
improvement when the angle reaches 0.9 arcminute, which corresponds to the smallest
beam of the experiment. The left panel of figure 5.12 shows the evolution of the slope
and spread with the averaging angle for the fifty brightest clusters in this study. The
slope and spread improve further after the 0.9 arcminute angle; however, because the
most compact clusters are about 1 arcminute wide, smoothing over larger angles will
blend the background with the clusters’ y-parameter values unevenly for compact
versus more extended clusters. Therefore, we define our best observable for the ACT
experiment to be the y-parameter value averaged over an angle of 0.9 arcminute. The
(Ytrue s Yreconstructed) DaIrs obtained at this angle for the fifty brightest clusters in this
experiment are displayed in the right panel of Figure 5.12 for the four reconstruction
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methods we consider. The top line is the line of perfect reconstruction, while the
other lines are the best fitting lines for each reconstruction. The bottom plain line
corresponds to the Gaussian prior, the dotted line to the truncated profile, the dash-
dotted line to the profile and finally the dashed line is the best fitting line for the
functional method. The slope and spread are summarized in table 5.2. We find that
the the functional method yields the best slope and spread, reconstructing on average
89% of the intensity of bright clusters with a spread under 10%. The performances
of both non-Gaussian statistical methods are comparable although slightly lower,
with a slope around 0.84 and spread of 11%. The Gaussian prior performs less well,
consistent with what we observed on the reconstructed maps. It is able to recover
69% of the intensity with a spread of 16%.
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Figure 5.12: Left: Slope and spread in function of the averaging angle (labeled di-
ameter). Right: reconstructed versus original central y-parameter averaged at 0.9
arcmin for the fifty brightest clusters.

Method Statistical Functional
Gaussian Truncated profile Profile

Slope 0.69 0.83 0.84 0.89

Spread 0.16 0.11 0.11 0.09

Table 5.2: ACT experiment: slope and spread for the average y-parameter of the 50
brightest clusters.

We finish the quantitative study of the reconstructed maps for the ACT exper-
iment by assessing the quality of predictions that would be made from the recon-
structed maps. Two questions come to mind: do the structures found in the re-
constructed map really correspond to clusters in the input map ? Can we associate
a given threshold in the reconstructed map to an input cluster intensity with high
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confidence ? To answer these questions, we compute the purity and completeness
of the samples for given output intensities. The reconstructed and original maps
are smoothed to 0.9 arcmin and clusters are detected in each map. The purity of a
sample of reconstructed clusters is the fraction of these clusters that have a counter-
part in the original within a radius of 0.6 arcminutes. For a fixed threshold ¢ in the
original map, we use the slope s and spread A defined earlier to find the sample of
detected clusters in each reconstructed map that would predict true clusters above
t. More precisely, we consider that the detected clusters in the reconstructed map
above threshold .(1—A).s predict the number of true clusters above threshold ¢. The
different samples in the reconstructed map then give predictions for the number of
true clusters of intensity greater than or equal to a predefined value. Their purity can
be compared. We find that reconstructed cluster samples that predict the existence
of true clusters of averaged y-parameter above 1.5 x 10~* are pure, that is, all such
detected clusters in the reconstructed map correspond to true clusters. The purity of
the statistical maps seems a bit lower than the purity of the functional map as the
threshold decreases (see Figure 5.13, left panel). This is consistent with the fact that
the corresponding intensity in the reconstructed maps is lower (because the slope is
smaller). The completeness is defined as the ratio between the number of clusters
in the reconstructed sample to the number of true clusters above the corresponding
threshold. The completeness plot in Figure 5.13 shows that the using the threshold
t.(1—A).s in the reconstructed maps is too optimistic for the Gaussian and the func-
tional method but yields accurate number counts for the two non-Gaussian statistical
priors. We conclude that the non-Gaussian statistical methods predict with great
accuracy the number of clusters of averaged y-parameter above 1.5 x 10™*, with no
false positive. In this study, we found 50 such clusters, thus the real ACT experiment
will detect around 150 such clusters. This is an appropriate number count to derive
cosmological constraints.
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Figure 5.13: Purity (left) and completeness (right) of the reconstructed samples.
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5.4 Planck: a lower resolution experiment

The Planck mission is designed to image the anisotropies of the Cosmic Microwave
Background Radiation over the whole sky. Although it will give unprecedented sen-
sitivity and angular resolution for such a task, the beam sizes and level of noise are
noticeably bigger than for the ACT experiment (see Table 5.3). The size of the small-
est beam, around 5 arcminutes, is quite large compared to the typical cluster size (1
to 10 arcminutes).

Planck experiment

Frequency of observation Beam size Noise level
v (GHz) fwhm (arcmin) o(uK)
143 7.1 6
217 5.0 13
353 5.0 40

Table 5.3: The characteristics of the Planck experiment at the frequencies used in
this work. The RMS detector noise per full-width-half-maximum pixel, labeled o, is
given in thermodynamic temperature units.

In this work, we assess the quality of our reconstruction methods on simulated
observed maps containing only the CMB and SZ clusters’ contribution. We consider
the three frequencies of observations where the contributions of these two signals are
the strongest: 143, 217 and 353 GHz. The actual Planck experiment will make mea-
surements at higher frequencies, where point sources and galaxy dust are dominant.
We rely on the fact that the use of these observations will allow to locate and esti-
mate point sources, and focus on the CMB and SZ signals. We use ten simulations,
each of which is a 10 by 10 degrees map. The CMB maps are simulated by Gaussian
random fields using a power spectrum derived from the best-fitting WMAP parame-
ters [5] (same as for the ACT experiment described in the previous section). The SZ
simulated maps are taken from White [62, 65].

In Figure 5.14, we display the power spectrum of the different signals contributing
to the observations at the frequencies where the clusters’ signal is the strongest. The
power spectrum of the CMB and of the clusters is scaled by their frequency depen-
dence, however the convolution by the beam is not taken into account. As expected,
the CMB signal dominates the SZ clusters’ signal except at fine scales (around 2
arcminutes). Taking into account the convolution by the beam, i.e. multiplying the
power spectrum of the CMB and SZ clusters’ signal by this of the beam, one can see
from these plots that the noise dominates the SZ signal at most scales. Under these
conditions, we expect Planck to detect the most massive (or extended) clusters only.
The large area covered by the experiment, however, will allow to detect a sizable
number of them.

We used both our statistical and functional methods to analyze these data. Sim-
ilarly to our study of the previous experiment, we compare four sets of results: the
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Figure 5.14: Power spectra of the signals contributing to the observation for the
Planck experiment. Left: at 143 GHz, right: at 353 GHz.

Gaussian, profile and truncated profile prior distributions for the SZ clusters and our
best variational results, using an weighted L? norm in wavelet space for the CMB
and a Besov norm for the clusters. We refer to Section 3.4 and 2.5.2 for the details
of each method.

5.4.1 Reconstructions of the Cosmic Microwave Background

As is the case for the ACT experiment, the quality of the reconstructions of the
Cosmic Microwave Background is similar for the four methods. Figure 5.16 shows a
5 by 5 degrees portion of one of the simulated maps together with the reconstruction
obtained from each method. The total RMS error for the statistical reconstructions
is slightly lower (1.12 x 107 ) than for the functional method (1.16 x 107°). This
difference of precision is spread across all scales (see the RMS per scale plots in Figure
5.15).

Both the RMS per scale plots and the residual maps of Figure 5.17 tell us that the
reconstructions are accurate for scales larger that the typical beam size (5 arcminutes).
The size of the beam in this experiment is the limiting factor of the reconstructions
of the Cosmic Microwave Background fluctuations, regardless of which method is
employed.

5.4.2 Reconstruction of the SZ clusters

As expected from the size of the beam and the level of noise in this experiment, we find
that we can reliably reconstruct only bright and extended clusters. In figure 5.18, we
show an input y map together with the reconstructed maps for each method. In these
figures we see that the statistical and functional methods have very different behavior
at low signal-to-noise ratio. The statistical method is rather conservative, yielding
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Figure 5.15: RMS error in the CMB reconstruction, scale by scale.

a low amplitude reconstruction, even for massive and bright clusters, whereas the
functional method allows to recover the amplitude of the signal better at the expense
of having a strong residual signal spread across the map. The maps obtained by the
statistical method on the contrary are well localized. We notice the effect of the prior
distribution is the same as for the ACT experiment. The Gaussian assumption for
the clusters allows to recover more low intensity signal. The profile prior causes the
amplitude of the bright clusters to be better reconstructed, but at the same time un-
derestimates lower clusters. The truncated profile prior reaches a consensus between
the two. Only a few clusters can be detected from the reconstructed statistical maps
(low completeness), however, the purity is maximal: every cluster detected (above a
threshold y-parameter of 2 x 107°) is a true cluster. This is not the case for the func-
tional method. Because of the rather intense residual structure, a significant number
of clusters would be detected in the functional map that do not exist. One would
need to increase the threshold up to 5 x 107° to obtain maximal purity in this case.

We selected the eight brightest and most extended clusters out of our ten simu-
lations to quantitatively compare the reconstruction of the central y-parameter with
the different methods. Typically, these massive clusters are about 10 arcmin wide
and their maximal y-parameter exceeds 5 x 107°. As is the case for ACT experiment,
we find that the observable that reaches the best trade-off between the adequation
to the original data and the spread is the average value of the central y-parameter
over an angle of roughly the same size as the beam. Figure 5.19 shows the output
averaged central y-parameter found in the reconstructed maps versus input averaged
central y-parameter in the original maps for the eight clusters selected. The top line
is the line of perfect reconstruction, the other lines show the best fitting line for each
method. In the table 5.4, the slope and spread corresponding to these eight clusters
is quoted for each reconstruction.

As can be observed on the reconstructed maps in Figure 5.18, taking in account the
non-Gaussianity improves the reconstruction of the central y-parameter by a factor
4 (truncated profile) to 6 (profile) over the Gaussian prior in the statistical method.
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Figure 5.16: CMB, Planck experiment. Top: original simulation, other panels: re-
constructions. Middle left: Gaussian, middle right: truncated profile, bottom left:
profile, bottom right: functional. The maps are 5 x 5 degrees.
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Figure 5.17: CMB, Planck experiment: residuals. Top left: Gaussian, top right:
truncated profile, bottom left: profile, bottom right: functional. The maps are 5 x 5
degrees.

Method Statistical Functional
Gaussian Truncated profile Profile

Slope 0.07 0.26 0.44 0.63

Spread 0.13 0.27 0.32 0.09

Table 5.4: Planck experiment: slope and spread for the average y-parameter of the
eight most massive and bright clusters.
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Figure 5.18: SZ clusters, Planck experiment. Top original simulation, other panels:
reconstructions. Middle left: Gaussian, middle right: truncated profile, bottom left:
profile, bottom right: functional. The maps are 5 x 5 degrees.
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Figure 5.19: Reconstructed versus original central y-parameter (4.8 arcmin average).

The functional method is even more accurate, improving the reconstructed values by a
factor 9 over the Gaussian statistical method and 1.5 compared to the best statistical
method. Although the slope is significantly improved over the Gaussian prior, the
spread in the non-Gaussian statistical reconstructions is somewhat high: around 30%
of the nominal value. This could be a potential problem when it comes to deriving
cosmological parameters from these reconstructions. In this regard, the functional
method yields a significant improvement over the statistical method altogether, it
recovers on average 63 % of the input y-parameter value with a spread that is less
than 10 % of this input value.

We conclude that under the conditions of the Planck experiment presented here,
only bright extended clusters may be recovered. The two methods we propose com-
plement each other: the shape and localization of the clusters is much better resolved
by the statistical method, whereas the functional method is more accurate and re-
liable for the estimation of the central y-parameter. Neither method seems to be
self-sufficient in this case to derive cosmological parameters accurately. However, if
one is willing to do the reconstructions with both methods, one could use a map
reconstructed from the statistical method to locate massive clusters, (which can not
be done reliably with the functional reconstruction,) and then use the result of the
functional method to infer the y-parameter of the detected clusters.

The actual performances of the Planck instrument may be better than the ones
used in these simulations. In particular the noise in the sky will not be uniformly
distributed because some areas will be better sampled than others. We assessed
the relevance of the noise level on the performances of the statistical method by
performing a similar analysis on the Planck maps with a reduced level of noise (a
factor 7 lower). We find that in these conditions the non-Gaussian statistical methods
recover around 60% of the y-parameter with a spread of the order of 10% (see [45] for
more details). This shows that the limiting factor for the statistical method in this
experiment is the noise level.
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5.5 The influence of point sources

In the studies we presented in the last two sections, we have made the simplifying
assumption that the contribution of the point sources and the Galaxy dust were
negligible or had been extracted from the observed maps before we process them.
The third study we present here aims at assessing whether the methods we propose
are robust to the presence of the point sources and Galaxy dust. The data we use
were simulated by astrophysicist Dominique Yvon and collaborators at CEA, France.
The frequencies of observation, beam size and noise level correspond to those of the
OLIMPO survey and are given in table 5.5. OLIMPO is an ongoing project which
aims at measuring the Sunyaev-Zeldovich effect in many clusters of galaxies during a
long-duration balloon flight. The size of the beam in this experiment is intermediate
between these of the ACT and Planck experiments we described earlier. The exper-
iment will collect data in four different frequency channels. Examples of observed
maps can be found in Figure 5.5 (the 265 GHz observation has been produced for
displaying purposes only and is not used in the study). At the two largest frequencies,
385 and 600 GHz, the point sources and Galaxy dust dominate the observations. The
CMB signal on the other hand dominates the observation at the lower frequencies,
143 and 217 GHz. The clusters’ contribution is maximal at 385 GHz but is largely
dominated by point sources and dust, therefore the most reliable channel to observe
the SZ effect is the lowest frequency channel: 143 GHz. The simulated data we study
here cover a four hundred degree square portion of the sky.

OLIMPO experiment

Frequency of observation Beam size Noise level
v (GHz) fwhm (arcmin) o (puK)/vVHz
143 3 150
217 2 200
385 2 500
600 2 5000

Table 5.5: The characteristics of the OLIMPO experiment.

5.5.1 Results obtained with the statistical method

For the statistical method, we compare the reconstructions yielded by different sets
of distributions. The histograms of the wavelet coefficients of the Galaxy dust are
well-fitted by a Gaussian. Moreover, we do not expect that the presence of dust will
cause a major deterioration of the clusters’ signal, because the Galaxy dust is smooth
and slowly varying and fills up the space. Therefore, the prior for the CMB and the
Galaxy dust are fixed to Gaussian, and we focus on the influence of different priors
for the point sources and clusters.

To get an idea of the problems encountered with the introduction of point sources,
we first tried the simplest prior for the clusters, i.e. the Gaussian prior, and compared
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the results obtained when the point sources are assumed Gaussian to the results ob-
tained using Jeffrey’s prior. The Gaussian prior is obviously not the best fitting prior
for the point sources because their extent is under a pixel size and they are sparsely
distributed. We saw that modeling the non-Gaussianity of the clusters leads to better
reconstruction of the SZ effect in the context of the ACT and Planck experiments as
well. However, we also found in the two previous studies that the quality of the re-
constructions of the CMB signal does not change between the case where the clusters’
prior is Gaussian and when it is not. This shows that in the simplified case where
only the CMB and SZ effect are present in the observations, the reconstruction of
one particular component (the CMB) is largely independent of the prior chosen for
the other component (the SZ signal). So the rationale for examining the case where
all four priors are assumed Gaussian, even if we know this model is too simple, is to
understand whether the reconstructions of the different signals are independent from
each other as was the case for the CMB/SZ experiments.

We find that the statistical method is very robust to the introduction of point
sources and Galaxy dust as far as the estimation of the CMB and clusters signals
are concerned. Indeed, even when all signals are assumed Gaussian, the precision
of the reconstructed maps of the CMB and clusters signal is similar to the quality
that would be expected from our study of the ACT and Planck experiments. The
CMB signal is very well estimated down to scales around 5 arcminutes, which is
slightly larger than the beam size and no traces of point sources or Galaxy dust can
be found. The algorithm is able to separate point sources from SZ clusters, and the
reconstructed clusters maps have similar quality to those seen for ACT, given the size
of the beam. Here the observable we use to assess the quality of the clusters map
is the average y-parameter over an angle of two arcminutes. Clusters are detected
as local maxima that dominate over a three arcminutes angle and are considered to
correspond to a cluster in the original map if the two centers are less than two and a
half arcminutes apart. Even when clusters are assumed Gaussian, the purity of the
clusters sample from the reconstructed maps is high (about 97 %) for intense clusters
(i.e. with central average y-parameter bigger than 1075). This proves that no intense
point sources are confused with the clusters, even when the point sources are modeled
with the Gaussian prior.

Surprisingly, the reconstructed map of the point sources allows to locate them
accurately, even when they are assumed Gaussian. The estimated point sources are
not as compact as a pixel but are extended to roughly the size of the beam. The
beam is small enough compared to the mean distance between two point sources that
this is not a problem in this experiment. However, the intensity of the point sources
is underestimated (around 25 % of their value). Moreover we find the algorithm
confused background noise with the point sources map. A white noise is spread out
in the reconstructed point source map, but fortunately, its level is lower than the
intensity of most point sources. The estimation of the Galaxy dust map is accurate
a coarse scale (around 20 arcminutes) but smaller fluctuations are not reconstructed
at all.

We now compare the results we obtained by fixing the prior to Gaussian for all
signals to the reconstructions obtained when Jeffrey’s prior (i.e. the log-uniform
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distribution on the multiplier) is used for the point sources (still using the Gaussian
prior for all the other signals). As expected the point sources map is much better
reconstructed, the background noise observed earlier has disappeared. The point
sources themselves are still extended to the size of the beam. Their intensity is
slightly better estimated than before but is still low (around 35%). Although the
prior on the Galaxy dust map has not changed, smaller scales are reconstructed with
this set of priors, indicating that the quality of the reconstruction of the Galaxy dust
depends on the accuracy of the point sources map. This seems natural since point
sources and Galaxy dust have very similar frequency dependence at the frequencies
of observation used here. On the other hand, the quality of the CMB and intense
clusters’ reconstructions remains the same, indicating that the statistical method used
here is able to separate signals primarily on the basis of their frequency dependence.

Finally, we studied in further detail the quality of the SZ clusters reconstructions
in this experiment by allowing the prior of this signal to be non-Gaussian. The results
we obtain are consistent we our remarks above: the reconstruction of other signals is
not affected by changing the prior of the clusters. The qualitative and quantitative
differences between the Gaussian, the profile, and truncated profile prior are similar
to those we found in the ACT experiment. That is to say, the profile prior allows to
recover the intense clusters more accurately than the Gaussian prior, at the expense
of underestimating lower intensity clusters and the truncated profile prior reaches a
compromise between the other two.

We conclude that under the conditions of the OLIMPO experiment, the presence
of the point sources and Galaxy dust will not affect the quality of the SZ maps
estimated by using the statistical method we propose.

5.5.2 Results obtained with the functional method

The functional variational method we propose to reconstruct the signals is much more
affected by the introduction of point sources. We did not find a balance between the
eight terms in the functional (four error terms and four regularization terms) that
allows to accurately recover all signals at the same time. With the nominal values
described in Section 2.5.2, the CMB is reconstructed correctly although it is a little
smoother than expected, but only a coarse scale approximation of the clusters’ signal
is recovered. The point sources maps is very well localized (the extent of estimated
point sources is typically smaller than the beam size). However, only 35% of their
intensity is recovered in the estimated point sources map, and the remainder of this
signal is attributed to the Galaxy dust, in the form of extended point sources of the
size of the beam on top of the Galaxy dust itself.

This lead us to conduct a smaller case study in order to determine whether the
Galaxy dust and point sources can be separated at all using this method. We gen-
erated observations with the parameters of the OLIMPO survey, only omitting the
contribution of the CMB and SZ cluster’s signal. From these observations we tried
to separate the Galaxy dust signal from the point sources. We find that the regular-
izing terms of these two signals have to be balanced taking into account the relative
amplitude of the Galaxy dust variations and the intensity of the point sources. This
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leads to choosing the parameters 74 and 3 so that v4d5y_ i pea 271 ( fa, 00) 2 ~
100 V3> izer | f3(pizel)|, rather than of the same order. With these parameters, the
functional algorithm is able to reconstruct both the point sources and the Galaxy
dust with great accuracy. In particular, the estimated point source map is free of
noise and the intensity of the point sources is recovered at 90%. Moreover, the extent
of the estimated point sources is extremely close to one pixel, with the intensity de-
caying sharply at the four closest pixels if it is not zero. Such accuracy in the point
sources map can not be achieved by the statistical method because it is constrained
to estimate the point sources map in wavelet space, causing the extent of the point
sources to be limited by the finer wavelet scale.

However, we find that the balance between point sources and Galaxy dust terms is
greatly affected by the reintroduction of the CMB and clusters signal. In particular,
a complicated interplay occurs between the reconstructions of the clusters signal, the
Galaxy dust signal and the point sources. As a result, the estimation of the clusters’
map is either too coarse or contains point sources that will make the detection of
clusters unreliable. Finding a better way to balance the different terms is extremely
difficult because contrarily to what we observed for the statistical method, the es-
timation of one particular signal is greatly affected by the estimation of the other
signals, making it impossible to study the influence of one parameter at a time.

We conclude from this study that the presence of point sources is a major concern
with the functional variational algorithm we proposed, preventing the method to
reconstruct accurately all signals at the same time. However, we find that in the
restricted case where only the point sources and the Galaxy dust maps are to be
extracted, this method is able to locate and estimate the point sources with great
accuracy both in intensity and in spatial extent. Therefore, the functional algorithm
we propose could be used in other type of experiments where the focus is the point
sources, to locate and estimate them accurately. From a more general point of view,
the success of the restricted experiment containing only point sources and Galaxy
dust shows that our innovative use of norms defined by different tight frames for
different signals is promising.

5.6 Summary of the results

In this chapter, we have applied both the variational approach and the statistical
approach we described in Chapters 2 and 3 to estimate the major astrophysical com-
ponents present in surveys of the sky at the frequencies between 100 and 600 GHz.
There are four of these components: the Cosmic Microwave Background, the Sunyaev-
Zeldovich effect, the infrared point sources and the Galaxy dust. Our goal is to obtain
reliable information on the clusters of galaxies by reconstructing accurate maps of the
Sunyaev-Zeldovich effect.

Since the SZ effect is a fluctuation of the CMB radiation, the reconstruction of the
CMB radiation is inherent to the estimation of the clusters of galaxies through their
Sunyaev-Zeldovich signature. The point sources and Galaxy dust, however can be
seen as pollutants of a second order. They dominate larger frequencies of observations
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while the CMB and clusters signal are more intense at smaller frequencies. Therefore,
we first assessed the quality of our methods on simulated data ignoring point sources
and Galaxy dust. Since different sky survey may have very different resolution, noise
level and be able to cover different extent of the sky, we studied two test cases of
different nature. The first one, ACT will cover a small portion of the sky with
a resolution of the order of one arcminute and moderate noise level. The second
experiment we consider, Planck, will cover the whole sky with a resolution of five
arcminutes and higher level of noise. In a third study, with intermediate resolution
and moderate noise, we assessed the influence of point sources and Galaxy dust.

For each experiment, we compared the results obtained for the functional method
to several sets of results obtained with the statistical method, where different priors
were used. The “Gaussian statistical approach” refers to the case where the clusters’
signal is modeled by a Gaussian prior and the “non-Gaussian statistical approach”
to other cases.

Our findings are the following;:

e The most reliable observable of the SZ clusters is the y-parameter averaged over
an angle of the same order as the beam size. (The y-parameter is the quantity
intrinsic to a cluster of galaxies that determines the amplitude of the resulting
Sunyaev-Zeldovich effect).

e In the absence of points sources and Galaxy dust, both methods perform sim-
ilarly. The CMB signal is reconstructed accurately down to the scale of the
smallest beam. However some differences are noticed:

The functional approach and non-Gaussian statistical approach outperform the
Gaussian approach in the estimation of intense clusters. Moreover, the statisti-
cal method does a better job at estimating the structure of the clusters whereas
the functional approach recovers more intensity.

For the high resolution experiment, ACT, we find that the clusters’ signal is
very accurately estimated by both methods, especially for the intense clusters.
We conclude that both the non-Gaussian statistical reconstructions and the
functional reconstruction yield estimates of the average y-parameter of intense
clusters that could be used to constrain cosmological quantities.

For the low resolution experiment, Planck, we find that the reconstructions of
the SZ effect are limited to bright and very extended clusters. The reliability of
the detection of these clusters in the functional reconstructions is low because
large residual structures appear. However, the estimation of the averaged y-
parameter is remarkably stable at the location of the true clusters. This, in
a sense, completes the performances of the non-Gaussian statistical approach.
In that case, extended clusters can be detected reliably because the structure
surrounding the peak of intensity are well estimated. However the spread of the
average y-parameter reconstructed is too high to be trusted. We conclude that
under these conditions neither methods are self-sufficient to derive cosmological
parameters from the reconstructed SZ maps. However, we determined that the
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limiting factor in this case is the noise level, which may be improved in the true
experiment in some areas of the sky that are observed for a longer time.

The statistical method is robust to the introduction of point sources and Galaxy
dust, leading to accurate estimates of the CMB and clusters signal. We deter-
mined that for this approach, the estimation of a single component does not
affect other components which have a different frequency dependence. Thus,
it is not necessary with this method to recover the point sources accurately to
obtain a satisfying clusters’ signal.

This is not the case for the functional approach, where a complicated interplay
between the different terms makes it difficult to study the precision of the recon-
struction of each component separately. As a result, we were not able to recover
all four signals simultaneously with this approach in order to find a satisfying
cluster map. We note however that the functional approach we propose can be
used to recover the point sources with almost perfect accuracy both in terms of
their intensity and their spatial extent, when the number of signals is reduced.
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