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1. Basic objectives and explanatory remarks.

Automatic and aysnchronously automatic groups were invented a few years ago
by J.W. Cannon, D.B.A. Epstein, D.F. Holt, M.S. Paterson and W.P. Thurston in
[CEHPT)].

The primary objective of this paper is to report on a number of new results
about the construction of new automatic and asynchronously automatic groups
from old by means of amalgamated products. A survey of these results will appear
in [BGSS2].

In order to keep this paper as self-contained as possible, we have provided here a
leisurely and mainly self-contained exposition of a little of the theory of automatic
groups. This exposition is based in large measure on the pioneering work of Cannon,
Epstein, Holt, Paterson and Thurston, which as of now exists only in preprint form
[CEHPT)].

Consequently this paper is divided up into three parts. The first one is an
introduction to our new work, the second is the exposition alluded to above of part
of the theory of automatic groups and the third part is devoted to our work on
amalgamated products of automatic groups.

Much of this work was done while the four authors were participants in the
vear long conference on geometric methods in combinatorial group thoery at MSRI
during the fall of 1988. Subsequently Gersten and Short (jointly) and Shapiro
(in some independent work) have developed some new ideas and perspectives for
studying automatic groups. In particular Gersten and Short have utilised and
extended some work of Gilman [Gi] in [GS3]. Shapiro [S] has studied fundamental
groups of finite graphs of automatic groups and has obtained a version of our
Theorem A for finite graph products. Many of their ideas have been incorporated
into the present version of our earlier work which has appeared in preliminary
preprint form as [BGSS1)].

We would like to thank John Stallings for a number of insightful comments and
also Frank Rimlinger for carefully reading and commenting on [BGSS1].

2. Automatic groups.

Let A be the finite set {ay,...,a,} and let A* be the set of all strings or words

made up from letters b; in A. A* includes the empty word which we denote by
e. We term n the length of w, which we denote by f(w). As usual A* can be
turned into a monoid by equipping it with the binary operation concatenation (i.e.
juxtaposition). The subsets of A* are often referred to as languages over A. We
shall be concerned with special languages over A termed regular languages over A
or sometimes regular sets (over A). We take for granted here the definition of such
a regular set (see IILA.1 for the definition). We will also need to consider regular
sets over the alphabet

A(2,3) = (AULS}) x (AU {8}) —{(5,8)}.

Here § is a so-called padding symbol which we assume not to lie in the set A. A(2,$)
arises from a consideration of pairs (u, v) of words u,v € A*. The point here is that
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although A* x A* can be turned into a monoid in the natural way via coordinatewise
multiplication it is not generated by A x A. This means that there is no obvious
way of expressing (u,v) as a product of pairs (a,b) of letters a,b € A when u and
v have

different lengths. The introduction of the § symbol is a technical device designed
to get around this difficulty. In fact we invoke here a mapping v from A* x A* into
A(2,$)* which is defined as follows. If u = ay...a,,v = by...by, then

v:(u,v) = (a1,b1) ... (@m,bm)(@ms1,8) ... (an,$) if m <n,
vi(u,v) = (a1,b1)...(an,by) if m=n,

v:(u,v) = (a1,b1) ... (an,00)($,0n41) ... ($,0m) if m>n

and
v:(ee) —e.

Now let G be a group. Then we term A a set of monoid generators of G if it
comes equipped with a map, termed a monoid generating map,

a—~a(ac A, aeqG)

of A into G whose extension p to a monoid homomorphism of A* into G is a
surjection. This means that every element of GG can be expressed as a product of the
elements in {@y,... ,a;}. The map a — @ need not be, but often is, monic, indeed
even an inclusion. However it is important to note, in order to avoid confusion,
that in many cases A is not a subset of G. The image of w € A* under p is usually
denoted here by w.

Suppose again that GG is a group and that A is a finite set of monoid generators
of G. A regular subset L of A* which maps surjectively to G via the map g is
termed a regular language (over A) for G and the pair (A, L) a rational structure
for G. The word w € L is referred to as a representative of g € G if w = ¢g. If
every element of G has exactly one representative then we will refer to (A, L) as
a rational structure with uniqueness for G (Gilman [Gi] calls this a rational cross
section for G).

Suppose that (A, L) is a rational structure for the group G. We need to consider
the following subsets of v(A* x A*):

L. = {V(wlvwz) | wi, Wy € L7w_1:w_2}7
and, for each w € A* the set
Ly ={v(wi,w2) | wy,wy € L,y = Waw}.

In the event that w = a; € A we sometimes denote L,, by L;.

The group G is termed an automatic group if there exists a rational structure
(A, L) for G with the following properties:

(1) L= is regular;

(2) L, is regular for each 1 =1,2,...,q.

We term such a rational structure an automatic structure or an automatic struc-
ture over A. Thus a group G is automatic if it has an automatic structure.
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3. Some properties of automatic groups.

As we have already noted, automatic groups were invented by J.W. Cannon,
D.B.A. Epstein, D.F. Holt, M.S. Paterson and W.P. Thurston in [CEHPT], al-
though the notion was hinted at in earlier work of J.W. Cannon [C]. They have
proved that if G is an automatic group and if B is any finite set of monoid genera-
tors for G, then there is an automatic structure for G over B ([CEHPT]). Thus the
property of being automatic 1s independent of the choice of the finite set of monoid
generators.

The very definition of an automatic group suggests that its structure is rea-
sonably uncomplicated. This is manifested by the fact that automatic groups are
finitely presented and also that they have a solvable word problem. These results
are due to Cannon et al. [CEHPT]. It is worth noting, however, that the class
of automatic groups is quite extensive. For instance it includes the so-called hy-
perbolic groups of M. Gromov [Gr |, which, following a suggestion of Cannon, we
shall term here negatively curved groups and which will be defined below. In par-
ticular the fundamental groups of closed hyperbolic manifolds are negatively curved
(Gromov [Gr]) and hence are automatic. Moreover Cannon et al. [CEHPT] have
proved that many common finitely presented groups are automatic; for example
all finite groups, all finitely generated free groups and all finitely generated abelian
groups are automatic. More generally they have shown that the class of automatic
groups s closed under finite free products, finite direct products and finite exten-
stons but not under finitely generated subgroups. Somewhat surprisingly a finitely
generated nilpotent group 1s automatic if and only if 1t contains a subgroup of finite
index which is abelian [CEHPT]. Recently Gersten and Short [GS1], [GS2] have
shown that all of the non-metric small cancellation groups of Lyndon [LS] are also
automatic.

It is clear then that automatic groups constitute a very interesting class of groups.

As we have already seen, an automatic group is described in terms of a regular
language over some alphabet. The very definition of a regular set implies that
there is a finite state automaton which recognizes this regular language (see IL.A.1).
Epstein and Rees [ER] have written computer programs to compute such a finite
state automaton. Thus it is in some sense practical to use computers to compute
“products” in automatic groups. This means that Epstein and Rees have built a
bridge between combinatorial group theory and computer science, which may well
have very interesting consequences.

4. Asynchronously automatic groups.

Let A be as usual a finite alphabet. Rabin and Scott [RS] have introduced the
notion of a two-tape or asynchronous automaton, which makes it possible to deal
directly with subsets of A* x A*, without introducing a padding symbol. This leads
to the definition of an asynchronously reqular subset of A* x A*, which we will dis-
cuss 1n detail in II.A.6 together with the notion of a two-tape automaton. It allows
one to define, following Epstein, Cannon, Holt, Paterson and Thurston [CEHPT],
an asynchronously automatic group. The definition is analogous to that of an au-
tomatic group. More precisely the group G is termed asynchronously automatic if
it has a rational structure (A, L) such that the sets

L=y = {(wy,w2) | w1, ws € L,y = Wz},
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and
L(z) = {(wl,wg)) | Wy, W2 - L,U)_lz wzai} (Cli - A)

are all asynchronously regular. We term such a rational structure an asynchronously
automatic structure for G.

Now if K is a subset of A* x A* and v(K) is regular, then K is asynchronously
regular. Consequently the class of automatic groups is contained wn the class of
asynchronously automatic groups. It also turns out, as in the case of automatic
groups, that asynchronously automatic groups are finitely presented and have solv-
able word problem ([CEHPT]. They play a very important role in our work.

5. Cayley graphs and fellow travellers.

Let G be a group and let X’ be a set. Then we term X a set of group generators
of G if it comes equipped with a map

T =T

of X into G, termed a group generation map, such that its extension p to a homo-
morphism of the free group F on & into G is a surjection. We now adjoin to X’ a set
X~! ={271 |2 € X} in one-to-one correspondence with X' and put A =X UX L.
Let us now extend the group generation map = — T (¢ € A') to a monoid homo-
morphism again denoted y, of A* into G by sending z7! to #~!. We denote the
image of w € A* under 1 by w and we term w reduced if it does not contain a
Lor 271z, We will call a set X' of group generators closed
under inverses if it is equipped with an

involution ¢ : X — A such that for each x € A, m =7 1. Clearly, A as
defined above is closed under inverses.

We now define the Cayley graph I' = I'(G) = T'x(G) of G relative to the set
X of group generators of G. I' is a directed graph with vertex set G and edges
all triples (g, a,ga), where g € G,a € A. We respectively term ¢ the origin, h
the terminus and a the label of the edge (g,a,h). We also sometimes refer to the
edges (g,a,ga) and (ga,a™", g) as inverses. The origin and terminus of an edge are
referred to as its extremities. We term a sequence ~ of (not necessarily distinct)
vertices go, ..., gn of I' a path of length n if either n = 0 or in the case where n > 0,
if for each ¢ = 0,...,n — 1 either ¢g; = g;4+1 or there exists an edge whose origin is
g; and whose terminus is ¢;+1. We term gg the origin and g, the terminus of v and
refer to them as the extremities of v and we say that v goes from gg to g,,. We will
also use the term path to refer to an infinite sequence, ¢o,... of vertices such that
for each 1 > 0, either g; = ¢g;4+1 or there is a directed edge whose origin is g; and
whose terminus is g;4+1. As above, gg i1s the origin of such a path.

The Cayley graph is always path connected.

If P and @ are vertices in a Cayley graph I' v, then the distance d(P, Q) between
them is defined to be the minimum length of a path from P to ). Since A is closed
under inverses, for each path that goes from P to (), there is a corresponding path
that goes from () to P. This turns I' into a metric space. The restriction of this
metric to vertices gives an integer valued metric. We shall sometimes refer to the
vertices of I'y(G), i.e. to the elements of G as points. A shortest path from the
group element ¢ to the group element h is termed a geodesic and a “triangle” in
Tx(G) is termed a geodesic triangle if its sides are geodesics. Gromov [Gr]| has

subword of the form zx~
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termed a geodesic triangle § — thin if every point on one side of the triangle is no
further than ¢ from at least one point on one of the other two sides, i.e. each side of
the triangle is contained in a d-neighbourhood of the union of the other two sides.
The group G is then termed negatively curved if there exists a ¢ such that every
geodesic triangle in I' 4(G) is -thin.

As already noted above, these negatively curved groups were introduced by Gro-
mov [Gr]. They can be described rather differently by means of so-called isoperi-
metric inequalities. To this end suppose that (X; R) is a presentation of the group
GG. Thus X comes equipped with a generation map whose extension to the free
group F on X is a homomorphism g of F onto G with kernel K the normal closure
in F' of R. We say that f : N — R is a Dehn function for this presentation of G if
it satisfies the following condition:
for any freely reduced word w, viewed as an element of F, such that w = 1 there
are words r; € R, p; € F and ¢, = £1 for 1 =1,..., N such that

N
w = Hpirfipi_l in Fand N < f({(w)).
=1

It is not hard to see that the existence of a polynomial Dehn function of degree
d > 1 for one finite presentation of the group G implies the existence of a polynomial
Dehn function of the same degree d for any other finite presentation (see IIL7).
Thus the existence of such a Dehn function is independent of the choice of finite
presentation of G. Hence we say that G satisfies a linear, quadratic, cubic, ete.
wsoperimetric inequality if it has a finite presentation with a linear, quadratic,
cubic, etc., Dehn function. Similar remarks hold also for Dehn functions which are
exponential.

The immediate relevance of these notions is that Gromov in his fundamental pa-
per [Gr] has proved the remarkable fact that a finitely presented group is negatively
curved if and only if it satisfies a linear 1soperimetric inequality.

We have already pointed out that these negatively curved groups are also auto-
matic. They include finitely generated free groups, finite groups, cocompact groups
of isometries of n-dimensional hyperbolic space and various classes of small can-
cellation groups (see Gersten and Short [GS1], [GS2] for the latest word on this
subject). In addition it follows readily from B.B. Newman’s spelling theorem [N]
that one-relator groups with torsion are also negatively curved.

The connection between automatic groups and these notions is that Cannon
et al [CEHPT] have proved that automatic groups, which we have already noted
are finitely presented, satisfy a quadratic i1soperimetric inequality. And similarly,
asynchronously automatic groups satisfy an exponential isoperimetric inequality
[CEHPT].

Each word w = by...b, € A* can be turned into a map from the set of non-
negative integers 0,1,... into G by setting w(t) =by...b; (t <n), w(t) =w (t >
n). We then term two words u,v € A* k-fellow travellers if for all t, d(u(t),v(t)) < k
in T4(G). We term u, v asynchronous k-fellow travellers if we can find monotonic
functions ¢ and ¢ so that d(u(¢(t)),v(¢(t))) < k in I'y(G). Both automatic
and asynchronously automatic groups can be characterized using these “k-fellow
traveller” notions.

6. Amalgamated products of automatic and asynchronously automatic
groups.
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Before stating our results we refer the reader to the book by Lyndon and Schupp
[LS] for the definitions and exposition of some of the properties of amalgamated
products and HNN extensions.

Let X be a group and let Z be a subgroup of X. Suppose that there exists
a rational structure (X, L(X)) for X such that p='(Z) N L(X) is regular. Then
Gersten and Short [GS3] term Z an L(X)— rational subgroup or more briefly a
rational subgroup of G (cf. also Gilman [Gi]). It follows easily from the work of
Gilman [Gi] that such rational subgroups are finitely generated (see also Gersten
and Short [GS3]). Suppose now that we denote the set of right cosets ©Z of Z in
X by X/Z. We term a regular set L(X/Z) contained in L(X) a regular language
with uniqueness for X/Z if the mapping

w—wZ (we L(X/Z))
is a bijection between L(X/Z) and X/Z.

All of our theorems about amalgamated products will be proved by appealing
to the following very general theorem.

Theorem A. Let G be the generalised free product of the automatic groups X and

Y amalgamating Z:
G=X *7 Y.

Let X be a finite set of monoid generators for X, let Y be a finite set of monoid
generators for Y, let (X, L(X)) be an automatic structure for X and let (Y, L(Y"))
be an automatic structure for Y. Suppose that the following conditions hold for some
constant k > 0:

(1) Z is an L(X)-rational subgoup of X (and hence there is a regular language
L(Z) C L(X) with exactly one representative for each element of Z);

(2) there is a regular language L(X/Z) with uniqueness for X/Z, contained in
L(X) and a regular language L(Y/Z) with uniqueness for Y/Z contained in
L(Y);

(3) whenever v € L(Z) and v € L(Y') represent the same element of Z, then u
and v are k-fellow travellers in T xuy(G);

(4) of w € L(X/Z), if v € L(Z) and if w € L(X) is such that o = W then
wv and w are k-fellow travellers in T'x(X); and similarly if w € L(Y/Z), of
veE L(Z), we LY) and uv = w then wv and w are k-fellow travellers in
Cxuy(G).

Then G is automatic. If (3) and (4) are replaced by

(3") whenever uw € L(Z) and v € L(Y') represent the same element of Z, then u
and v are asynchronous k-fellow travellers in T xuy(G);

4" of w € L(X/Z), if v € L(Z) and w € L(X) 1s such that wv = W then
wv and w are asynchronous k-fellow travellers in T'x(X); and similarly of
w e LY/Z), if v e L(Z), we L(Y) and uv = w then uv and w are
asynchronous k-fellow travellers in I xuy(G).

Then G 1s asynchronously automatic.

The assertion in (1) that there is a regular language L(Z) for Z with exactly one
representative for each element of Z follows from general principles as we shall see
in due course.

There i1s an analogous theorem which holds also when X and Y are asyn-
chronously automatic.



AUTOMATIC GROUPS AND AMALGAMS 9

7. Amalgamated products of finitely generated abelian groups.

We noted earlier that a finitely generated abelian group is automatic. Moreover
it follows readily from the fact that a subgroup of a finitely generated abelian group
is a direct factor of a subgroup of finite index that subgroups of finitely generated
abelian groups are rational (for an appropriate choice of alphabet and language).
It follows that we have verified that at least some of the hypothesis of Theorem A
is in effect when X and Y are finitely generated abelian groups. Indeed it is not
hard to deduce the following theorem from Theorem 1.

Theorem B. FEvery amalgamated product of two finitely generated abelian groups
18 automatic.

So it follows, in particular, that the groups
Gmp =<a,b;a™ =0" >
(and hence also all torus knot groups) are automatic.

8. Amalgamated products of negatively curved groups.

Suppose now that H is a negatively curved group, that W is a finite set of group
generators of H and that B = WU W™ A word w € B is termed a geodesic
word if ((w) < l(v) for all words v over B satisfying © = w. We have already
remarked that such a negatively curved group H is automatic. In fact if we denote,
for the moment, the set of all geodesic words w over B by L(H), then (B, L(H)) is
an automatic structure for H (see Theorem 1 of I1.B.6). In view of the fact that
negatively curved groups are automatic, it makes sense to try to apply Theorem A
in the case where X and Y are negatively curved. The outcome in this instance is
the following theorem, which is perhaps our main result.

Theorem C. Let X and Y be negatively curved groups and let
G=X *7 Y

be an amalgamated product of X and Y amalgamating a subgroup Z. Suppose that
we can find a finite set X of group generators of X and a finite set Y of group
generators of Y such that Z is L(X)-rational in X, where L(X) is the set of all
geodesic words over X UX ™! and Z is L(Y)-rational in Y, where L(Y) is the set of
all geodesic words over Y U Y~L. Then G is asynchronously automatic. Suppose,
in addition, that the finite generating sets X and Y can be chosen so that there is a
constant k' such that every pair of words v € L(X), v € L(Y') which represent the
same element z € Z are k'-fellow travellers in the Cayley graph of G relative to the
set X U Y of group generators. Then G is automatic.

9. Amalgamated products with cyclic amalgamations.
Theorem C can be improved upon when Z is cyclic.

Theorem D. An amalgamated product of two negatively curved groups with a
cyclic subgroup amalgamated 1s automatic.

Now finitely generated free groups are negatively curved. So Theorem C ap-
plies also to amalgamated products of finitely generated free groups with a cyclic
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subgroup amalgamated. Negatively curved groups do not contain free abelian sub-
groups of rank two [Gr]. On the other hand each torus knot group contains a free
abelian group of rank two. So it follows that the free product of two negatively
curved groups with a cyclic amalgamation need not be negatively curved. On the
other hand Gromov asserts on page 113 of [Gr], §3.3 that if in addition both fac-
tors are torsion free and the cyclic subgroup is maximal in both of them, then the
resulting product is negatively curved (see also [BF]).

10. Amalgamated products of free groups.
There is a special case of Theorem C that is of independent interest.

Theorem E. FEvery amalgamated product of two finitely generated free groups with
a finitely generated subgroup amalgamated 1s aysnchronous-ly automatic.

Here Theorem C applies immediately on noting, by a theorem of Anissimov and
Seifert [AS] that a finitely generated subgroup of a finitely generated free group
is rational. The rationality of finitely generated subgroups of finitely generated
free groups is also a consequence of the fact that a finitely generated subgroup of
a finitely generated free group is a free factor of a subgroup of finite index (M.
Hall [H]) . As we pointed out a little earlier, asynchronously automatic groups are
finitely presented and have solvable word problem. So it follows, in particular,
that the amalgamated products in Theorem E all have solvable word problem (this
can, of course, be proved directly). On the other hand there exist asynchronously
automatic groups with unsolvable conjugacy problem because C.F. Miller III [M]
has proved that there are free products of two finitely generated free groups with
a finitely generated subgroup amalgamated which have unsolvable conjugacy prob-
lem. It is as yet unresolved whether there exist automatic groups with unsolv-
able conjugacy problem, although the conjugacy problem is solvable for negatively
curved groups (Gromov [Gr]).

Now C.F. Miller IIT [M] has also proved that the isomorphism problem for free
products of finitely generated free groups with a finitely generated subgroup amal-
gamated is unsolvable. It follows that the isomorphism problem for asynchronously
automatic groups is unsolvable. Again the corresponding problem for automatic
groups 1is still open and considered to be of major importance.

Theorem E can be applied also to HNN extensions (see Lyndon and Schupp [LS]
for the appropriate notions involved here).

Corollary E1. Let G be an HNN extension of a finitely generated free group with
finstely many stable letters. If the associated subgroups are all finitely generated,
then G s asynchronously automatic.

This corollary follows from Theorem E on noting that G is a free factor of an
amalgamated product of two finitely generated free groups with a finitely generated
subgroup amalgamated and then appealing to the following

Theorem F. A free product of two groups is asynchronously automatic (auto-
matic, negatively curved) if and only if the factors are asynchronously automatic
(automatic, negatively curved).

As we have already pointed out, the if part of this proposition is due to Cannon
et al [CEHPT]. Somewhat surprisingly the proof of the other half is not completely
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obvious (see also [GS3]). We shall discuss and prove some variations on Theorem
E in II1.6. Its counterpart for direct products is unresolved.

11. Examples.

Asynchronously automatic groups which are not automatic are hard to come by.
We shall show that the group

G = {(a,b,t,u;tat™ = ab, tht™" = a,uau™" = ab,ubu~"' = a)

does not satisfy a quadratic isoperimetric inequality and is consequently not auto-
matic. However GG is an HNN extension with two stable letters of the free group
of rank two. As we have already pointed out such HNN extensions are all asyn-
chronously automatic.

Now G is a free factor of an amalgamated product H of two finitely generated
free groups with a finitely generated subgroup amalgamated. So it follows from
Theorem F that there exist amalgamated products of two finitely generated free
groups with a finitely generated subgroup amalgamated which are not automatic.
In other words Theorem E is best possible. In a vague sense this example touches on
the difficulty in obtaining information about the subgroup structure of automatic
groups about which we know very little. Recently our knowledge has increased
somewhat because of the work of Gersten and Short [GS3]. We also refer the
reader to Gersten [Ge] for a detailed discussion of isoperimetric inequalities and for
additional examples of asynchronously automatic groups which are not automatic.
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PArRT II. AN INTRODUCTION TO AUTOMATIC GROUPS.



AUTOMATIC GROUPS AND AMALGAMS 13

A. AUTOMATA

1. Finite state automata and regular sets.

Our objective here is to provide the reader with an introduction to some standard
material in Computer Science, most of which can be found, e.g. in Hopcroft and
Ullman [HU].

As usual a non-empty set equipped with a binary associative multiplication is
termed a monoid if it has an identity element.

Let A be the finite set {aq,...,a,} and let A* be the set of all words

made up from letters b; in A (including the empty word e); we term n the length of
w, which we denote by ((w). This set A* together with the binary operation con-
catenation (i.e. juxtaposition) is a monoid, which we will make use of throughout.
Let a be the obvious map of A into A*. Then for every monoid E and every map 3
of Ainto E there is a unique monoid homomorphism ~ (which by definition maps
e to the identity element of E) from A* into E such that ya = 3, i.e. A* is free
on A. The subsets of A* are often referred to as languages over A. We shall be
concerned with special languages over A termed regular languages over A or more
usually regular sets (over A). These depend for their definition on the notion of a
finite state automaton.

Definition. A finite state automaton 1s a quintuple

M= (SY, A T, s0),

) S is a finite set of states;

) Yis a subset of S, the set of yes states or accept states or final states;
3) A is a finite set, the alphabet, the elements of which are letters;

) T is a function from S x A — S, the transition function;

) so is an element of S, the initial state or start state.

M can be thought of as a machine with a head that scans a tape, which is in a
vertical position and is fed into M. The tape is divided up into a finite number of
squares. Each square has a letter printed on it. The top of the tape is fed into M,
which starts up in the initial state sg. M reads the first letter on the tape, the tape
moves up so that the machine now scans the second letter on the tape, whereupon
the machine goes into a new state. This new state is determined by the transition
function 7 and the first letter scanned by M. The process continues with each
new state being determined by the preceding state and the letter that was scanned
while the machine was in that state. When the last letter on the tape is read, the
machine goes into a new state and stops. If the last state is an accept state, then
the string of letters on the tape is accepted by M. Otherwise it is rejected.
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Definition. The language recognized by M or the language accepted by M or the
language of M is the set L(M) of words accepted by M.

The language L(M) of M can therefore be described as follows. Given a word
w=>by...b, (b; € A), let tg = so and let t; = 7(¢t;—1,b;) (¢ =1,...,n). Then

LM) = {w=>by...by|te €Y.

Definition. A language recognised by a  finite state automaton  1s
termed a reqular language or a reqular set.

Example.

Let M be the finite state automaton defined as follows. The set S of states of M
consists of sg, the initial state and sy, s2, f. The set Y of accept states of M consists
of sg, 81,32, the alphabet A of M consists of x, X and the transition function 7 of
M 1is defined as follows:

T(s0,2) = $1,7(80,X) = 82, 7(81, ) = 51,

(51, X) = f,7(s2,2) = f,7(82,X) = s2.

Then it is not hard to see that the language L(M) of M consists of all those words
in x, X which do not contain a pair of consecutive letters of either the form X or

Xz.

There is a slightly more precise way of defining regular sets over an alphabet A.
To this end, let S be a finite set and let Map(S,S) denote the monoid of all maps
from S into itself. An action of A on S is by definition a mapping

7: A— Map(S,S).

Since A* is free on A this action 7 can be extended to a homomorphism 7* of
A* into Map(S,S). We sometimes denote the image of s € S under the mapping
7*(w), where w € A*, by sw. Notice that every finite state automaton comes
equipped with such an action on a finite set. It follows immediately that a subset
L of A* is regular if we can find an action 7 of A* on a finite set 9, a subset Y of
S and an element sg of 5 such that

L={weA|suweY}

In working with finite state automata we will often suppress explicit mention of 7,
using the notation sw introduced above without further explanation.

2. State graphs or transition diagrams.

It is often more convenient to codify a finite state automaton M as a finite
directed , labelled, graph with a distinguished vertex termed the state graph of M or
the transition diagram of M. The vertices of this graph are the states of M and the
edges of M are the triples (s,a,t), where s € S, a € A and t = 7(s,a); sometimes
a is referred to as a transition (from s to t). The origin of (s,a,t) is s, the terminus
is t = 7(s,a) and the label is a. The disinguished vertex of the graph is so. Clearly
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distinct edges can well have the same label, though not if they have the same origin.
The sequence of labels of a path in this graph is a word w € A*. Tt follows that
the language of M is the set of such words w corresponding to the paths in the
graph which begin at sy and end at an element of Y. It is useful to term a state
lwe if there is at least one path from this state to some accept state; otherwise it
is termed dead. We term a state f a fail state if it is not an accept state and every
edge with origin f has terminus f.

Conversely a finite, directed graph I', with a distinguished vertex, whose edges
are labelled, and which satisfies the obvious conditions, can be thought of as a finite
state automaton. More precisely, let S denote the set of all vertices of I', A the set
of all labels and sg the distinguished vertex and let Y be a subset of S. Suppose
that for each vertex s and each label a, there is exactly one edge in I with origin s
and label a. Then we can define a map 7 from S x A into S by setting 7(s,a) = b
where b is the terminus of the edge in I' with origin s and label a.

3. Non-deterministic finite state automata.

We will also need the notion of a non-deterministic, finite state automaton, which
was introduced by Rabin and Scott [RS]. The definition is analogous to that of a
finite state automaton.

Definition. A non-deterministic finite state automaton is a quintuple
M= (S,Y, AU {e}, 1,5),

where

(1) S is a finite set of states;

(2) Y us a subset of S, the set of accept states or final states;

(3) A is a finite set, the alphabet, the elements of which are letters and € is a
special letter not i A;

(4) 7 is a function from S x (AU {e}) — 25, the transition function, where 2°
is the set of all subsets of S (in the event that 7(s,z) = (), we sometimes
say T(s,x) is undefined);

(5) So is a non-empty subset of S, the set of initial or start states of M.

As before M can be thought of as a machine with a head that scans a tape, which
is in a vertical position. The tape is divided up into a finite number of squares.
Each square has either a letter from A or an € printed on it. The top of the tape
is fed into M, which starts up in any one of the initial states s € Sy. M reads
the first letter say x on the tape, and then moves on to the second letter and the
machine goes into a new state. This new state is non-deterministic in that it is
allowed to be any one of the states in the set 7(s,2). If 7(s,x) is undefined, the
machine stops. Otherwise the process continues until the last letter on the tape
is read. The machine then either stops because the image under the transition
function is empty, or else the machine goes into a new state (again as dictated by
the transition function) and stops. The transition function 7 allows for a certain
amount of choice or indeterminacy. If these choices can be made in such a way that
the entire word w written on the tape is “read” by M and if the machine goes into
an accept state after reading the last letter of w then w is accepted by M; otherwise
it is rejected.
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Definition. The language of the non-deterministic, finite state automaton M 1s
the set L(M) of words accepted by M, with all occurrences of € deleted.

We emphasise here that the language of a non-deterministic finite state automa-
ton does not consist of the words accepted by the automaton, but consists instead
of the words left over after deleting all occurrences of € from such accepted words.

The state graph or transition diagram of a non-deterministic finite state automa-
ton is defined in much the same way as for a finite state automaton. The difference
here is that different edges with the same state as origin may well have the same
label.

The following theorem of Rabin and Scott [RS] shows that the languages recog-
nized by non-deterministic finite state automata are precisely the languages recog-
nized by (deterministic) finite state automata.

Theorem 1. The language recognised by a non-deterministic finite state automa-
ton s a reqular language.

We will frequently make use of this theorem in order to prove that various lan-
guages are regular.

Proof. Let M be a non-deterministic finite state automaton. We first define a new
non-deterministic finite state automaton M’ as follows. The alphabet, set of states,
initial states, accept states of M’ are exactly the same as those of M. The transition
function 7’ of M’ is defined by setting, for each a € A,

7'(s,a) =7(s,a) U {u | there exist distinct elements ¢t = tg,...,t of S

such that tg € 7(s,a),tx = v and 7(¢;,€) = tiy1,

i=0,....,k—1}
and

T'(s,€) = 0.

It follows that the language of M’ coincides with the language of M. However we
have arranged that if a word w is accepted by M and if w contains any epsilons then
the word w’ obtained from w by deleting all occurrences of € is accepted by M.
Now we build a finite state automaton whose states consist of the set of all subsets
of the set of states of M’. We take the initial state of our finite state automaton to

be the set of initial states of M’ and the accept states to be those subsets containing
an accept state of M'. The transition function ¢ is defined in the obvious way:

o(U,a) ={t |t € 7'(u,a), where u € U}.

It follows without difficulty that the language of this finite state automaton coin-
cides with that of M’ and therefore also with the language of M.

4. Calculus of regular sets.

Our objective now is to prove that a variety of sets are regular and that new
regular sets can be produced from old by the standard operations of set theory and
also by other means. To this end let A be a finite set and let K and L be subsets
of A*. We define

KL={w]|w=wuv,ue€ K,veL},
and, letting e denote the empty string as usual,

K*={ec]UKUKKUKKKU....
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Theorem 1. Suppose that K and L are regular sets contained in A*. Then the
following hold.

(1) A finite subset of A* is reqular.

2) A" — K s reqular.

3) K UL s regular.

4) KN L s reqular.

KL s reqular.

K™ is regular.

A* and O are reqular.

If B 1s a second finite set and ¢ 1s a homomorphism of the monoid A* into

the monoid B*, then ¢(L) is reqular over B.

(9) If ¢ is a homomorphism of A* into B* and if J is a regular subset of B*,
then ¢~1(J) is regular over A.

5)
6
7
8

.
e e N N N N

Proof. (1) Let F be a finite subset of A*. We define a finite state automaton M
with language F' as follows. The set S of states of M consists of all the initial
subwords of the words in F' together with the start state sy = e and a fail state f.
The transition function 7 is then defined by 7(s,a) = sa if sa € S and 7(s,a) = f
otherwise. The set Y of accept states of M is taken to be F.

(2) If M = (S,Y, A, 7,50) is a finite state automaton recognising the language
K, then (5,5 — Y, A, 7,s0) recognises the language A* — K.

(3) Let ¥, & be the state graphs corresponding to the finite state automata
recognizing the languages K and L respectively. Then the disjoint union of ¥ and
® is the graph of a non-deterministic automaton (with two initial states), with
language K U L. Since we have made no mention here of € we adopt the convention
that all e-transitions map every state to (.

4 KNL=A"—((A*=K)U(A*—L)).

(5) Let M be a finite state automaton with L(M) = K and N a finite state
automaton with L(N) = L, both over the alphabet 4. We define now a non-
deterministic finite state automaton

O=(SUT,Z,AUA{e},p, s0)

where S and T are the set of states of M and N respectively, sg is the start state
of M, Z is the set of accept states of N and the transition function p is defined as
follows. On S x A, p is the transition function of M and similarly, on 7" x A, p is
the transition function of N. The only e-transitions that take a state to something
other than () are those which by definition take an accept state of M to tg, the
initial state of N. Then the language of O is K L.

(6) Suppose that I = L(M), where M = (S,Y,A,7,50). We define a non-

deterministic automaton
0= (S U {uo}v YU {uo}v AU {6}7 g, UO),

as follows. As indicated we have introduced a new start state ug to M and have
enlarged the set of accept states of M by including ug. The transition function o is
defined 7 on S x A and o(ug,€) = sg,0(y,€) = uo, y € Y. As indicated previously,
wherever o has been left undefined, the result is taken to be (). It follows that the
language of O is K™*.
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(7) The assertions follow from (1), (6) and (2).

(8) Suppose that M is a finite state automaton over A with language L and that
A =H{a1,...,a,}. For each a; suppose ¢(a;) = b;1...b; m, where, of course, m
depends on ¢ and each b; ; € B. For each s € S we now add new states

S54,155¢,25- -5 Si,m—1
and define a transition function o by

U(vai,l) = 81‘,1,0(81‘,1751‘,2) = 5,2
ey O(Sim—2,0i m—1) = Sim—1,0(Sim—1,0i.m) = 7(s,a;),

where 7 is the transition function of M. This then defines a non-deterministic finite
state automaton M’ over 13, whose accept states are simply the accept states of M,
whose start state is the start state of M and whose language is ¢(L).

(9) Let M’ be a finite state automaton over B with L(M') = J. We define a
finite state automaton M over A as follows: the states of M, the accept states
of M and the start state of M are exactly the same as those of M’. Finally,
the transition function 7 of M is defined by 7(s,a;) = o(s,#(a;)), where o is the
transition function of M’ and o(s, ¢(a;)) is simply the action of ¢(a;) on s that is
defined by o. The language of M’ is ¢~'(J), which completes the proof of (9).

In general it is not easy to determine whether a given subset of A* is regular.
The following lemma can often be used to prove that certain sets are not regular; it
is also often useful in proving that a given regular set has some property or other.

Lemma 1 (The Pumping Lemma). Let L be a reqular language over A and let
M be a finite state automaton with k states that recognises L. Then for every word
w € L of length at least k there exists a factorisation

w =Yz

of w such that
Uay) <k, l(y) > 1,

and ‘
xy'z € L for every 1 > 0.

Proof. Let us write

w=1by ...ba(b; € A).

The path beginning at the start state sy of M in the state graph of M defined by
w must contain a loop since n > k and there are at most k states in M. Let ~ be
the first such loop that occurs. We can assume that ~ is a simple loop and hence
that the subword y of w which “labels” this simple loop is of length at most k. If
we think of A* as acting on the set of states of M, as described in §1, then we see
that zyz takes so to an accept state of M. It follows that zy’x takes sg to precisely
the same state for every i > 0. Thus zy'z € L for every 1 > 0.

Notice that the proof of the Pumping Lemma provides us with a little more
information which turns out to be useful in some instances. In fact we have proved
that if w’ = w'wv’ € L, where ((w) > k, then we can express w in the form w = zyz
with ((xy) <k, 0(y) > 1 so that u'zy'zv’ € L for every i > 0. We shall often make
use of this observation and which we refer to also as the Pumping Lemma.
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Corollary 1. Let M be a finite state automaton. Then there is an algorithm which
decides whether or not L = L(M) is finite.

Proof. Let k be the number of states of M. Notice that by the Pumping Lemma if
w € L and ((w) > k, then there is a word w’, satisfying the condition ((w) — k <
l(w'") < l(w), which is also accepted by M. It follows that L is finite if and only if
none of the words over A of length k,k+ 1,...,2k — 1 is accepted by M. We can
check this by feeding into M these finitely many words.

5. Products.
Let A be the usual alphabet. We recall from 1.2 that

A(2,3) = (AUAS}) x (AU{8}) —{(3,8)},

where § is the padding symbol introduced in §2. We define similarly
A(3,8) = (AU{$}) x (AU{$}) x (AU{$}) —{(5,3,9)}

and similarly for A(4, %) and so on. The padding map v also has a counterpart here
- if u,v,w € A*, then we define v((u,v,w)) to be the obvious word in A(3,$)*. So
for example, v(ab, a,aab) = (a,a,a)(b,$,a)($,$,0). Again v is monic.

We shall make frequent use of the following lemma.

Lemma 1. If K and L are reqular languages over A, then the image of the product
set K x L under v is a regular language over A(2,%).

Proof. The proof of this proposition is straightforward. We define the appropriate
finite state automaton with language (K x L). In order to do so we need to intro-
duce a new letter ¢ which lies outside SUT where (S,Y, A, 7,50) and (T, Z, A, 0,10)
are finite state automata recognising the languages K and L respectively. Con-
sider the finite state automaton with state set (S U {q}) x (T'U{q}), accept states
(Y U{q})x(ZU{q})—{(q,q)}, and alphabet A(2,$). The state (¢, ¢) is a fail state
and the transition function ¢ of this finite state automaton takes the value (¢, q)
except in the following cases:

g((, )( b)) ( (7a)70(tvb))a seS, teT, abe A

S((s,),(8,0)) = (g,0(t,0)), se Y U{ghteT, be A

<((s,1),(a, %)) = (7(s,a),q), s€ St € ZU{q},a € A
(

The initial state is (s, o). The language accepted by this finite state automaton
is then v(K x L).

Next we prove

Lemma 2. Suppose that K is reqular over the alphabet A(2,%$). Then the projection
P of v=1(K) onto the first factor of A* x A* is regular over A.

Proof. Let A be the state graph of a finite state automaton D with L(D) = K.
The vertices of A are states and the edges of A are labelled by pairs (z,y), which
lie in A(2,9). Let ¥ be the graph with the same set of vertices as A. The edges of
U are the edges of A differently labelled - if (x,y) is the label of an edge in A, then
this edge in W is labelled by x if @ # § and it is labelled by € if + = $. Then ¥ can
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be thought of as the state graph of a non-deterministic finite state automaton FE,
whose initial state is the initial state of D and whose accept states are the accept
states of D. The language of E 1s P. So P is regular, as claimed.

There are analogues of Lemma 2 for regular sets over the alphabets A(3,$),
A(4,%) and so on. In these instances there are a number of different possibilities
for the projections. However in the cases where we need to make use of such
analogues the proof that the sets involved are again regular will closely follow that
of Lemma 2 and so we omit it here.

We impose now a total order < on A as follows:

ar <az <o <oay.

This induces an order, which we again denote by < on A*, first by length, shorter
words coming first and then lexicographically on words of equal length. We will
need the following lemmas.

Lemma 3. The set
L ={v((u,v)) |u,v € A", L(u) < l(v)}

18 a reqular language.

Proof. We construct a finite state automaton M over A(2,$) which recognises L.
M has three states, sg,y, f, where sg is the start state, y is the only accept state
and f is a fail state. The transition function 7 of M is defined as follows :

7(s0,(a,b)) = s0, if a,be€ A;
7(s0,(8,0)) =y if b€ A
m(y,($,0)) =y if b € A;
7(s,(e,d)) = f in all other cases.

Next we observe

Lemma 4. The set
K ={v(u,v) | u,v € A l(u) =L(v),u < v}

18 reqular.

Proof. Let
C=A{(z,2) |z € A}, D ={(z,y) | z,y € A}.

Then

and is consequently regular.
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Proposition 1. Let Q be a regular set contained in R = v(A* x A*). Then

J = {u | there is at least one v with v(u,v) € @,
and whenever v(u,w) € Q, then u <w}
is a regular set over A.

Proof. We make use of the notation of Lemma 3 and Lemma 4 of this section. Let
7 be the composition of v~ !, restricted to R and the projection of A* x A* onto
the first factor. Then

J=7rm(QN(KUL))—7(QN(R—-(KUL)))
and is consequently regular.

Finally we will need one more fact involving the construction of regular sets.

Lemma 5. Let L be a reqular language over the alphabet A. Then the diagonal
A(L) = {p(w,w) | we L}
of L s reqular over A(2,%).
Proof. Notice that
A(L)=v(L x LYN{(a;,a;) |i=1,...,q}"

is the intersection of regular sets so it is regular.

6. Asynchronous or two-tape automata.

Definition. An asynchronous finite state automaton or a two tape automaton T
18 a determanistic finite state automaton of the form

M= (S Y, AU{e}, 7, s0),
where here € 1s a letter not in A, equipped with a partition
S=5US5,
of S into two subsets.

We emphasise that the letter e introduced here should not be confused with the
€ involved in non-deterministic automata, but is used as “an end of tape symbol”.
We term M the finite state automaton associated to T, S the set of states of T, sg
the start state of T and Y the set of accept states of T.

Now let w =0y ...b, € (AU {e})*. Put

$; =80b1...bi (1 =0,...,n).
We now define a mapping
O:(AU{e}) — (AU{e})* x (AU {e})”

as follows: ®(w) = (u,v) where u is obtained from w by deleting all the letters
b; for which s;_; € S and v is obtained from w by deleting all the letters b; for
which s;_1 € S;. We can think of ® as a mechanism for taking w and rewriting it
on a pair of tapes so that it can now be read by T. Notice that ® is one-to-one but
not in general onto.
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Definition. The language L(T) recognised or accepted by a two-tape automaton T
is the set of all pairs (u',v") € A* x A* such that

(u'e,v'e) € (L)

where L 1s the language recognized by the finite state automaton M associated to
T. We shall refer to such sets as asynchronously regular sets.

Thus (u',v") € L(T) if and only if there is a “shuffle” w of u’e, v’e which lies in L
- s0o ®(w) = (u'e,v’e). Note that since M is deterministic, this shuffle, if it exists,
1S unique.

We can think of T as a machine which scans a pair of input tapes Ty and T5. As
in the case of a finite state automaton, each of the tapes is divided up into squares.
Ty has a word u’ over A printed on it followed by the end of tape symbol € and
similarly Ty has a word v’ over A printed on it followed by an e. The machine
starts up in state sg. If sg € Sy, T scans the first letter b; printed on 77 and goes
into state sgby = s1. Similarly if sg € So, T scans the first letter ¢; printed on 75
and goes into state sgpc; = s1. Now if 57 € 57 then T scans the second letter b, on
T when sy € 57 and goes into state s1b2. On the other hand if s € 52 and s; € 57,
then T switches over to Tj, scans the first letter by on T} and goes into state s1b;.
At each stage the state that the machine is in dictates which tape is to be read.
If the process terminates with T having read everything on both tapes and if the
final state that T ends up in is an accept state, then (u’,v’) € L(T) - otherwise
(u',v") ¢ L(T). We sometimes say that (u’e,v’€) is recognised or accepted by T.
Notice however that it is the pair (u’,v") that is in L(T).

Examples.

(1) The set
L={v((a",a®))|n=0,1,...}

is not the language of a finite state automaton over A(2,$), where here
A = {a}.

The proof that L is not the language of a finite state automaton follows
readily from the Pumping Lemma.

(2) The set ‘
L= {(a",azn) |n=0,1,}

is the language of a two-tape automaton.
To see this, define a two-tape automaton 71" by defining its associated
finite state automaton M as follows:

A ={a}, 51 ={s0}, 92 ={s1,52,53,4, f},Y = {y}.
The transition function 7 of M is defined then by
800G = 81, 80€ = 83,810 = 82,8204 = 80,830 = f,83€ =y
ye=fya=f,fa=f fe= [ sie=f se=f.
(3) The set
L={(a",a®)|n=0,1,...} U{(a®",a") | n=0,1,...}

is not the language of a two tape automaton.
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In order to see that L is not asynchronously regular, observe that if an asynchro-
nous machine T is scanning a pair of tapes with (a”e¢, a®¢) written on them, where
either r = 2n and s = n or vice-verse, then for large n there is no way that T can
be concocted so as to be able to discern whether to read the first tape twice as fast
as the second or the second twice as fast as the first. This remark can be translated
into a proof by applying the Pumping Lemma in an appropriate fashion.

It follows that the union of two asynchronously regular sets need not be asyn-
chronously regular. Although we will not prove this here, asynchronously regular
sets are closed under complementation. So this implies that the class of asyn-
chronously regular sets is not closed under intersections either.

One could broaden the definition of an asynchronous two—tape automaton to
non—deterministic asynchronous two—tape automaton 7' where the corresponding
automaton M may be a non-deterministic finite state automaton. The class of

languages of such machines is clearly closed under finite union, and so is a larger
class than the class of asynchronously regular sets.

The following theorem serves to show that two tape automata are more powerful
than ordinary automata.

Theorem 1. Let B be a given alphabet, K a subset of B* x B* such that v(K) s
regular over B(2,%). Then K is asynchronously regular.

Proof. Let M be a finite state automaton over B(2,$) recognizing v(I) and put
A =BU{e}. Let
Se={s¢|s€S}, S, ={s,|s€S}

be two copies of S. Put
Sy =85US, Se=85, U SxA U{y} U{f}

We define now a two-tape automaton 7' by defining its associated finite state au-
tomaton N as follows. First the state set of NV is §1U.S3. The start state of N is the
start state of M (which lies in S7), the accept state of N is y and f is a fail state
of N. We denote the action of B(2,$) on S that is given to us by the transition
function of M by writing s(x,y), where s € S and (x,y) € B(2,$). Then, with
(b,c € B,s € 5), the transition function of N is defined to take all states to the fail
state f except in the instances detailed below:

sb = (s,b),(s,b)c = s(b,c),se = (s,¢€),(s,e)b = (s(5,0)),
(s,0)e = (s(b,%))e, 500 = (5(b,%))¢, 5.0 =(5(8,0)),
sre =1y, (s,€)e =y if s an accept state of M.

Then L(T) = K.

It follows from Theorem 1 and the very definitions of automatic and asyn-
chronously automatic groups that every automatic group is also asynchronously
automatic (see 1.2 and 1.4).

Recall that the class of non—deterministic asynchronously regular languauges is
strictly larger than the class of (deterministic) asynchronously regular languages.
However M. Shapiro has observed that the corresponding classes of groups (asyn-
chronously automatic and “non—deterministic asynchonously automatic”) are iden-
tical.
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7. Asynchronously regular sets.

The class of sets that are the languages of two tape automata is not closed
under intersection. However in one important instance the intersection of two
asynchronously regular sets is again asynchronously regular.

Lemma 1. Let L' and L" be reqular sets over the alphabet A and let L be a
language over A recognized by the two tape automaton T. Then

LN(L' x L")

18 the language of a two tape automaton.

Proof. Let M be the finite state automaton associated to T and let M’, M be finite
state automata recognizing the languages L' and L respectively. Let S = Sy U S,
be the decomposition of the state set S of M, let S’, S” be the state sets of M’ and
M" respectively, with Y, Y, Y" denoting the respective accept state sets, sg, s
and s{ the respective start states. We now define a two tape automaton U whose
language is

LA(L' % L")
The finite state automaton N associated to U has state set S x S’ x S”, with
decomposition

S xS x8"=(8 xS xS U(Sy xS xS8").

The set of accept states of N is ¥ x Y’ x Y and the start state is (so, s, 5 ). Then
the transition function of N is defined for each a € A by

L (sa,s'a,s")if s € S
(s,s",8")a = R
(sa,s,s"a)if s € Sy

and
(5,8 ,5")e = (se,s,5").
Then L(U) = LN (L' x L"), as required.

We note finally that it is not hard to see that A* x A* is asynchronously regular.
Hence it follows from Theorem 1 that if K and L are regular over A then K x L is
asynchronously regular.
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B. AUTOMATIC AND ASYNCHRONOUSLY AUTOMATIC GROUPS

1. Regularity and automatic groups.

We will adopt throughout, unless explicitly stated otherwise, the notation used
in [.2.
We start out here with some examples of automatic groups.

Example 1. Finite groups are automatic.

Proof. Let G = {x1,...,24} be a finite group of order q. We take A = {aq,...,a,}
to be a set of monoid generators for G, the element ¢; mapping onto x;. Put L = A.
Then, by Theorem 1 of I1.A.4, L is regular and so too are the L; and L= since they
are all finite.

Example 2. The infinite cyclic group Coo =< x > 18 automatic.

Proof. We set A = {z, X} and define p by putting p(z) = z,u(X) = 271, Let
L =1L;UL_ where
Ly = (o} L = {X}*

Then L= = A(L),
Lo = AL {5, 8)} UACL){(S, X))

and

Lx = A(L4){($.2)} UALO){(X.9)).

It follows then from Theorem 1 of II.A.4, that each of these sets is regular and
hence that Cs 1s automatic.

Notice that every element of C'», has a unique representative. This can always
be arranged by virtue of the following proposition.

Proposition 1. Let (A, L) be an automatic structure for the automatic group G.
Then there is a regular set J contained in L such that (A,J) is an automatic
structure for G and such that J contains exzactly one representative for each element

of G.

Proof. We adopt the notation of Proposition 1 of II.A.5. Recall that we order
the finite set A, and then order A* such that v < v means that ((u) < {(v) or
l(u) = {(v) and u precedes v in the induced lexicographical order.

We take here () = L—=. Then the corresponding set .J is given by

J=A{u|uéLandif v(u,v) € Lo,u < v}.

So J is regular and consists precisely of those elements v € L which are lexico-
graphically least among the elements of L which map onto p(u) under p as desired.



26 G. BAUMSLAG, S.M. GERSTEN, M. SHAPIRO AND H. SHORT

It is clear that (A, .J) is a rational structure for G. It remains to prove that it is
also an automatic structure. Since J= = A(J), J= is regular by Lemma 5 of I.A.5.
Similarly J; is regular since 1t is the intersection of regular sets:

Ji:Liﬂl/(JXJ).

We call such an automatic structure (A, J) an automatic structure with unique-
ness.
Next we prove

Lemma 1. If (A, L) is an automatic structure for the group G then, for each
w e A”,
L, =Av(u,v)|u,v € Lyu=7vw}

18 reqular.

Proof. We proceed by induction on ¢(w), the length of w. Suppose that
w = bl Ce bn,

where here b, € A. If {(w) =0, i.e. if n =0, then L,, = L= is regular by hypothesis.
Suppose then that ¢(w) > 0. Then

w = bl Ce bn—lbn = w’bn.

Inductively L, is regular. Now (note the discussion in the first paragraph of II.A.5
and the remark following the proof of Lemma 2 of that section)

L' =uv(Ly, X Ly )Nv(L x A(L) x L)

is regular. Observe that

L' = {v(u',u,u,v) | v = ub,, @ = vw'}.

We now project L' onto the product of the first and the last factors. This yields the
language L,, which is consequently regular by the appropriate analogue of Lemma

2 of ILLA5.
Next we deduce the following theorem of R. Gilman [Gi].

Theorem 1. Let G be an automatic group. If G 1s infinite then G contains an
element of infinite order.

Notice that Theorem 1 implies that an automatic group all of whose elements
are of finite order is finite.

Proof. Let (A, L) be an automatic structure with uniqueness for G. Let M be a
finite state automaton which recognizes L. Let k be the number of states of M.
Since G is infinite, so is L. Let w € L be of length at least k. By the Pumping
Lemma

w=azyz {(y)>1where zy'z € L (i >0).

Notice that this implies that 7 is of infinite order. Indeed suppose that we assume
the contrary. Then the map g, which is by assumption, monic on L, maps the
infinitely many elements xy’z (¢ > 0) to finitely many elements of G.

The next lemma turns out to be very useful in working with automatic groups.
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Lemma 2. Let (A, L) be an automatic structure with uniqueness for the group
G. Let M, M—,M,,..., M, be finite state automata which recognize respectively the
reqular sets L,L—,Ly,...,L,. Let k be the mazimum number of states in the the
finite state automata above. Then for each j € {=,1,...,q} and every pair of words
u,v € L for which v(u,v) € Lj,

| O(w) — l(v) |< K.

The finite state automaton M= is sometimes termed an equality check-er for G
and the automata M; are then termed comparator automata,

Proof. Suppose that ((u) = ((v)+r where r > k. It follows then from the Pumping
Lemma that we can find words x,y, z over A(2,$) such that

v(u,v) = zyz, l(z) = L(v),l(y) > 1, 2y'z € L;(t=12,...).

Observe that © = (by,¢1)...(by,¢p), that y = (bp41.9%) ... (bptm,$) and that =z =
(bp+m+1,9%)...(bs,$) where here u = by...b,,v = ¢1...¢p. It follows that the
infinitely many elements

b ... bp(bp_|_1 e bp+m)ibp+m+1 ooby € L(l > 0)

represent the same element of G. This contradicts the assumption that (A, L) is
an automatic structure with uniqueness for G.

As an example of manipulation of automatic groups, we use Lemma 2 to prove

Theorem 2. ([CEHPT, §13, Theorem 13.2])

The free product G of two automatic groups Gy and G 15 again automatic.

Proof. We remind the reader that we can think of G as a group which is generated
by its subgroups G; and G5 and which satisfies two additional conditions, namely
(1) G1 N G2 = 1;
(2) every product ¢g1...9, (9i € G1 UGy —{1}) which is strictly alternating,
ie. if g; € Gy, then g;41 € G5 and vice versa, is different from 1.
Let (A;,L;) be an automatic structure with uniqueness for G;, ¢ = 1,2. Put
A=A UAy. Then A can be viewed as a set of monoid generators for G in the
obvious way. We assume in addition that the empty word e is the representative
in L; of the identity element of the group G; (that this is always possible is shown
at the end of the next section). Define

L = Lo{(L1 —{e})(La — {e})} L.

Then L is regular. We claim that (A, L) is an automatic structure with uniqueness
for G.

Observe first that L contains exactly one representative for each element of G.
Consequently L= = A(L) and is consequently also regular.

Now define
L' = Lo{(L1 — {e})(L2 — {e})}*

and

L" = Li{(L2 = {e})(L1 — {e})}".
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Then L' and L are regular. Now if x € A; then
L, = A(L) (L),

and if € Ay, then
L, = A(L")(Ly),-

So in both cases L, is regular. This completes the proof that (A, L) is an automatic
structure with uniqueness for G and hence that G is automatic.

There is a more convenient way of proving that a group is automatic which is
perhaps best described by considering its Cayley graph.

2. Geometry of the Cayley graph.

Let X be a finite set of monoid generators of the group G. We can also view X
as a set of group generators (see 1.5) and hence we can adopt here the notation and
definitions of that section. As before we define

A=xux

and use the notation @ for the image in G of the word w € A* under the usual
homomorphism p. We will sometimes denote the elements of A simply by ay, ..., a4.
As already discussed in 1.5 we denote the Cayley graph of G relative to this set A
of generators variously by I' = I'(G) = T'x(G).

We adjoin now to A the padding symbol $ and extend p to a homomorphism of
(AU{$})* onto G by sending $ to 1. If

w=cy...cp, € (AU{$})”
then we define the t-th initial segment or t-th prefix wy of w by
wy=cy...ce ift <n, wy=wif t > n.

Here we interpret wo = e, the empty word. Each such word w defines an infinite
path w in I' by
w(t) = we(t > 0).

Notice that w has origin 1 and ”terminates” at w.
The following lemma can be proved directly from the definition.

Lemma 1. Let I' be the Cayley graph of the group G as defined above. Then the
following hold:

(1) d(g,h)=n if there exists u € A* of length n such that gu = h and if v € A*
is such that gv = h then ((v) > n (g,h € G);

(2) d(g,h) =d(fg,fh) =d(1,g7 h) (f.g.h € G);

(3) d(g, k) < ((u) + d(g, h) + £(v) (9.5 € Grurv € AY);

(4) d(g1fgz,h1fh2) = d(g192,h1h2) if f,g1,92,h1,he € G and fg1 =
g1f, fha =haf.

Now suppose that (X, L) is an automatic structure for the group G. Then,
adopting the notation introduced above, the following lemma holds.
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Lemma 2. (A, L) is an automatic structure for G.

proof. If v € X', then

L.-+ ={v(u,v) | v(v,u) € L, }.

We recall the following definition from I.5.

Definition. Let u,v be two words over AU {$} and let k be a fized positive real
number. We term u,v uniformly k-close or k-fellow travellers if

d(u(t),v(t)) <k for allt > 0.

This implies that the two paths defined by v and v (in the Cayley graph I' of
G relative to X') from 1 to w and U respectively stay within a distance k of each
other at each point t in time. Cannon et. al.[CEHPT] refer to such a number k as
a modulus of continuity and we shall sometimes avail ourselves of this terminology.
We sometimes also say that v and v fellow travel with constant k.

We will find the following lemma useful.

Lemma 3. Let (B, L) be an automatic structure for the automatic group G. Let (
be a positive integer and let

R =A{v(u,v) |u,v € L,d(u,v) < (}.

Then there exists a positive real number k such that if v(u,v) € R then u and v are
k-fellow travellers.

Proof. Let wy,...,w; be the set of all those elements of B* of length at most /.
Then each L, is regular and therefore so too is

Let M be a finite state automaton recognizing the regular set R. Suppose that
r is the number of states of M. We claim that k = 2r 4+ ¢ fulfills the conditions of
the lemma. This is a consequence of the proof of the Pumping Lemma and Lemma
1 of this section. In a little more detail, observe that for each ¢ there is a path of
length at most r — 1 in the state diagram of M from v(uy,v;) to an accept state of
M. This translates into the existence of two words u; and vy over B of length at
most 7 — 1 such that

u(t)uy = v(t)ow

where w 1s a third word over B of length at most ¢. It follows from Lemma 1 above
that

d(u(t),v(t)) < 2r+¢
which i1s more than enough to complete the proof.

Next we introduce another crucial definition.
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Definition. A language L over the alphabet X has the k-fellow traveller property
if w and v in L are k-fellow travellers whenever d(w,v) < 1.

This leads to the following important characterisation of automatic groups.

Theorem 1. ([CEHPT, §6])
Let (X, L) be a rational structure for the group G. Then (X, L) is an automatic
structure for G iof and only if L has the k-fellow traveller property for some k.

Proof. One part of this theorem follows immediately from Lemma 3 of this section
- we need only take ¢ = 1.

In order to prove the converse let us suppose that X = {z1,...,2,} and put
rg = e. We now define for each 1 = 0,...,p a finite state automaton N; which
recognizes L; = L,,, which ensures that (X', L) is an automatic structure for G.

Now denote the ball of radius k in the Cayley graph I" of G relative to X with
center at 1 by By(1):

Bi(1)={g| g€ G,d(1l,9) <k}

Notice that By(1) is finite.

The state set of N; is By(1) U{f}, where f is a fail state. The start state of N;
is 1, and it has exactly one accept state T;. The transition function of N; is then
given by

(.9) v gz if 7 'gT € Bi(1)
T =
gty f otherwise,

where here (x,y) € X(2,$) and we take $+ = 1. Then it follows that N; accepts
v(u,v) (u,v € L) if and only if v7'u = 7;. Hence

L, = IJ(L X L) N L(Nl)

is regular, by Theorem 1 of II.A.4 and Lemma 1 of II.A.5, and the proof of the
theorem is complete.

We shall sometimes refer to these finite state automata N; as abbreviated versions
of the standard automata.

It follows from the proof of this theorem that if we replace some representatives
in L by other representatives in in A*, only the fellow traveller constant changes.
It follows from this that

Corollary 1. Let (A, L) be an automatic structure for G. Let S be a finite subset
of L, and S" a finite subset of A* such that u((L — S)U S") =G.
Then (A,(L — S)U S') is an automatic structure for G.

In particular, we can always suppose that the empty word is a representative of
an automatic structure, if we are free to alter the fellow traveller constant.
3. Automatic structure and generating sets.

Our objective in this section is to prove that the existence of an automatic
structure is independent of the choice of monoid generators.
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Theorem 1. Let G be a group and let A and B be finite sets of monoid generators
for G. Then G has an automatic structure over A if and only if it has an automatic
structure over .

Proof. Suppose that (A, L) is an automatic structure for G. We divide the proof
that G also has an automatic structure over B into three cases.

We consider first the case where B contains an element by such that by = 1.
Suppose then that A = {ay,...,a,} and that B = {bg,...,b,}. Since by € B we
can choose wy,...,w, € B* such that

a; = w; and K(wi)zg(i::[,...,q)

for some (¢ (padding out the w;’s with by’s where necessary). Now define a homo-
morphism ¢ : A* — B* by

Plai) =wi (1=1,...,q).

By Theorem 1 of IILA4 ¢(L) = L' is regular over B. We shall prove that L’ has
the k—fellow traveller property for an appropriate choice of k.

Let us denote the distance function in the Cayley graph I' 4 of G relative to A by
d 4 and similarly denote the distance function in the Cayley graph I'g of G relative
to B by dg.

Choose uj € A* such that

w=0b; (j=1,...,p).

Let
0" =max{l(uy),...,0(uy)}.

By Lemma 2 of IL.B.1 there exists a constant k; such that if d(w,u’) < ¢’ where
u,u’ € L, then v and u’ are kyi-fellow travellers in I" 4. We now choose

k= kil +2¢.

Now suppose that w,w’ € L' and that dg(w,w’) < 1. We will prove that w and
w’ are k-fellow travellers in I's. By definition, we can express

w=w; ...w; , where w =a;, ...qa; €L

and
! ) . . .
w' =wy, ... wj,, where w' =aj, ...aj, € L.

Since @ = w and u/ = w’, it follows that d4(w,u’) < ¢'. So u and u' are k;-fellow
travellers in I' 4. Therefore w and w’ are fellow travellers in I's with constant
k= k0" 4 2¢.

We consider next the case A = {by,...,b,} (p > 0), B = {by,...,b,} where
again we assume that by = 1. Let (A, L) be an automatic structure for G over A.
Choose v € B* with 7 = 1 such that {(v) = ¢ > 1. Define a set map ¥ : A* — B*
as follows. If w € A*, number the occurrences of by consecutively. Then ¥(w) is
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the result of omitting from w all occurrences of by numbered by integers which are
incongruent to 0 modulo ¢ and replacing the others by v. We now define

L' = (L)

We claim that (B, L') is an automatic structure for G. There are two parts to the
proof of this assertion. The first involves proving that L’ has the k-fellow traveller
property, for some k - our choice of L' was designed with this in mind. The second
part is the proof that L’ is regular. Since L' is clearly a language for G, this will
mean that (B, L’) is indeed an automatic structure for G.

Suppose that k-fellow traveller constant for L is k1. We shall prove that L’ has
the k-fellow traveller property with k = ki + 2¢. Notice that the distance functions
in 'y and I'p are the same, as an edge labelled by begins and ends at the same
vertex, and so appears in no geodesic path. So we shall denote them both by d.
Now if w € L, then for each t we have

d(w(t), T(w)(t)) < L.

Suppose that d(¥(w), ¥(w’)) < 1 in I's. Then d(w,w’) < 1 in I'4. Consequently
w and w’ are k;-fellow travellers in I' 4 and hence also kq-fellow travellers in I'g. It
follows that ¥(w) and ¥(w') are ky 4 2(-fellow travellers in I'p as desired.

It remains to prove that L’ is regular. We build a non-deterministic finite state
automaton M’ accepting L'. Suppose first that

M= (S Y A 1, s0)

is a finite state automaton accepting L. We define the state set S’ of M’ in stages.
To begin with S’ contains S x {1,...,¢}. The transition function is defined on this
part of S’ as follows:

(s,7)b; = (sbi,r) (1 =1,...,p).

We now define a number of e-transitions for our machine M’:
(s,r)e = (sbg,r +1) (r=1,...,0—1).

We now complete the definition of S’. To this end suppose that v = ¢y...cy.
Then for each s € S we add the states (s,0,¢;) (i = 1,...,0 — 1) and complete the
definition of the transition function of M’ by defining

(s,0)cr = (8,0,¢1), (8,0 c1)ca = (8,0, ¢2), ..., (8,0, co—1)cr = (s,1).

We have one initial state for M', namely (sg,1) and take Y x {1,...,(} to be the
accept states of M'. Then it follows that the language of M’ is L' as desired.

We are now in a position to complete the proof of the theorem. Suppose then
that A and B are any given pair of monoid generators for G, as described in the
statement of Theorem 1. We adjoin to B a new letter by and define bo = 1. Then
by the first part of the proof G is automatic over B U {bg} and by the second part
of the proof it is automatic also over B, as required.
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4. Automatic groups.
Our objective now is to prove the following

Theorem 1. The direct product G of two automatic groups Gy and Gs s again
automatic.

Proof. We think of GG as being generated by its normal subgoups G; and G2 which
intersect in the identity and which commute elementwise. In particular every ele-
ment g € G can be written uniquely in the form ¢ = g192 where ¢; € GG;. Now let
(A1, Ly) and (Az, L2) be automatic structures with uniqueness for Gy and G re-
spectively. We put A = A3 UA; and L = Ly Ly. Then (A, L) is a rational structure
with uniqueness for G. It suffices then for the proof of the theorem to show that L
has the k-fellow traveller property for some k.

With this in mind, observe that L; has the k;-fellow traveller property for some
choice of k;. In addition, by Lemma 2 of II.B.1 there exists a real number k3 such
that if uy,v1 € Ly are such that d(uy,v7) < 1 then

| C(ur) = L(v1) [< ks,

Let k4 be the maximum of ky, ks, k3 and put & = 2ky. We shall prove that L has
the fellow traveller property with constant k = 2ky.

Suppose that u,v € L and that d(uw,v) < 1. If d(w,v) = 0 then v = v and so are
trivially k—fellow travellers. Suppose then that d(w,v) = 1. Now

U =uiuz, v =010y (u1,v1 € Ly,u2,v2 € Ly)

uniquely and w = vz for some x € A. If x € Ay then u; = vy and uw; = v3x. Hence
ug and vy are k—fellow travellers. It follows then from Lemma 2 of I1.B.2 that u
and v are also k-fellow travellers. Finally, suppose that x € A;. Then uy = v77 and
so uy and vy are ky-fellow travellers. Moreover | ((uy) — ((v1) |< ky. We consider
now in turn each of the possibilitites (i) f(uq) < €(v1), (i) €(u1) = £(v1) and (iii)
l(uy) > (vy). It follows from Lemma 1 of I1.B.2 that

d(u(t),v(t)) < (2ky =)k

for every t. This completes the proof.
Next we prove

Theorem 2. Let G be a group and let G' be a subgoup of finite index m in G.
Then G is automatic if and only if G' 1s automatic.

Proof. Suppose first that G' is automatic. Decompose G into m cosets modulo G':
G=Gr UG r,u---UG'r,

where we take 1y = 1. Let (A, L') be an automatic structure with uniqueness for

G’', where A" = {by,...,b,}. Put

A:{bl,...,bp,cl,...,cm}
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and extend the generation map of A’ to G’ to a generation map of A to G by
sending each ¢; to the equally indexed r;. As usual we denote the image of a word
w over A under the usual homomorphism i by w. Now define

L=LcqULc;U---ULc,.

Then L is regular and maps bijectively to G. So (A, L) is a rational structure for
GG. We claim that it is an automatic structure. It suffices to prove that L has the
k-fellow traveller property for some k.

With this in mind, observe that

ral'g = waﬁ(av s 7@)r7(a,ﬁ) , Talpg = w;ﬁ(aa s 7@)r(§(a,ﬂ) )

where wag,wgﬂ are words in the generators ai,...,a,, a and [ range over the
obvious indices and v(«, ) and §(a, 3) lie between 1 and m. Let k' be the maximum
of the lengths of these words wag,wgﬁ. Notice that if uc;,ve; € L and if the
distance in the Cayley graph of G between ue; and ve; is at most 1, then w and ©
differ by right multiplication by one of the wqg, w;ﬂ. Hence by Lemma 3 of I11.B.2,
remembering that (A’, L") is an automatic structure for G, u and v are k"-fellow
travellers in the Cayley graph of G’, for some k”. But this implies that ue; and ve;
are (k" + 2)—fellow travellers in the Cayley graph of G. This proves one part of
the the theorem.

We are left with the proof that if G is automatic then so too is G'. Let (A, L)
be an automatic strucure for G where A = {a4,...,a,}. As before we decompose
G into cosets modulo G':

G=Gr UG r,u---UG'r,

where again we take r;1 = 1. If ¢ € G lies in the coset G'r;, we term r; the coset
representative of g which we shall also denote by ¢g. Put @; = z; and consider the
elements

(t=1,....m,g=1,...,9).
Observe that o(r;,z;) € G'. Notice also that for each choice of ¢ and j

o(ri, ;) = rixjriv;

rix; = o(r,xj)ry

for a suitable choice of k. It follows from a repeated application of these mg
. as a product
of the o(r;,x;) = s; j and g. The process starts out by noting that ry = 1 and then

equations that that we can express any given product g = x;, ...z,

proceeds as follows:

g=(ray). .2, = 81,5184 Tiy ... Ty,

= 81,4, (rjlxi2)xi3 s gy, (r]i = rlwil)

== 8171‘18]‘171‘2 Ce

= 51,i1851,i25j2,43 + -+ Sjn_1,in Y-

So if ¢ € G', then g = 1 and we have re-expressed g as a product of the s; ;. In
other words G’ is generated (as a monoid) by the s; ;. This method of re-expressing

g goes back to Schreier (cf. e.g. the book by Magnus, Karrass and Solitar [MKS]).



AUTOMATIC GROUPS AND AMALGAMS 35

We now choose A" = {t;; |t =1,....m, j = 1,...,q} to be a set in a one-
to-one correspondence with the elements of the set consisting of the s; ;. Consider
now the set of those words w = a;, ...a;, over A such that w € G'. Notice that
W= x; ...7;, and so it can be re-expressed in the form

W= 81,41 951,i29]2,05 =+ Sjn_1,in-
We now choose L' to consist of all the corresponding words
Bty intois - tiu_in

over A'. We claim that (A’, L') is an automatic structure for G'.

We prove first that L' is regular. Let M = (5,Y,A,7,5) be a finite state
automaton recognizing L. We build a non-deterministic finite state automaton M’
which recognizes L'. The state set of M’ is taken to be

S =S x{ri,...,rm}

M’ has a single start state (so,1) and the set of success states of M’ is defined to
be Y x {ry,...,rm}. We now define an action of A" on S’ by

(s,ri)t; j = (sa;,rg), where rp = r;z;.

Notice that in all other cases the action of ¢; ; on S’ is undefined. Then it follows
that L’ is the language of M’ as desired.

It suffices then in order to complete the proof of the theorem to prove that L’
has the k—fellow traveller property. But this follows without difficulty from the
fact that L has the k-fellow traveller property.
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5. Isoperimetric inequalities, finite presentations and the word prob-
lem.

Suppose that GG is a group given by the finite presentation
G=<X;R>

where R is closed under inverses. Let F' be free on X and suppose that w € F' is a
consequence of R, i.e. w =1 1n G. Thus

w = plrlpl_l .. .pnrnpgl(pi € F.r; € R).

Then it follows from the method of disc diagrams (see, e.g. Lyndon and Schupp
[LS]), which we will discuss more fully in II1.7, that we can re-express w in the form

—1 —1
w=uis1u; ... unsNuy (u; € F,s; € R)

where
((u;) < Zﬁ(ri) + {(w).

Recall that a function f : N — R is called a Dehn function for the presentation
if the u; and s; above can be chosen so that N < f({(w)).
It is not hard to deduce the following lemma.

Lemma 1. Let G be a group gwen by the finite presentation
G=<X;R>.

Then G has a solvable word problem if and only if G has a recursive Dehn function.

It is perhaps worth noting that if one finite presentation of a group G has a
recursive Dehn function, then every finite presentation of G has a recursive Dehn
function.

We prove next the

Theorem 1. Let G be an automatic group. Then
(1) G s finitely presented;
(2) G satisfies a quadratic isoperimetric inequality;
(3) G has a solvable word problem.

Proof. We start out by proving that G is finitely presented. By definition G is
finitely generated. So there exists a free group F' freely generated by a finite set
X together with a surjective homomorphism p, say, of F' to GG. Our objective is to
prove that the kernel K of i is the normal closure of a finite set.

Asin L5, put A = YUX L. Then, again as in 1.5, A is a finite set of monoid gen-
erators of (G. Since G is automatic, it has an automatic structure with uniqueness
(A, L) over A, by Theorem 1 of I1.B.3. We denote the Cayley graph of G relative
to X by I'. As before we denote the image of w € F under p by w. Suppose that



AUTOMATIC GROUPS AND AMALGAMS 37
is a relation in G, i.e. w = 1. Let

be the ¢ — th initial segment of w. So wy = e and w, = w. Let w; be the
representative of w; in L. Now view each word over A as an element of F in the
obvious way. Then, working in F', we find that

(uoblufl)(ulbguz_l) . (un_lbnu,jl) = ugbiby ... bput = ugwu .

Since d(u;, wig1) < 1, uy, uiqq are k-fellow travellers in I for some k. In particular
there is a path p; in I' of length at most k from u;(t) to w,;41(t) for each t. Each
such path p; can be identified with a word over A of length at most k. Now suppose
that

ul‘:Oél...Oég,UH_l:ﬁl...ﬁm

where the «;, 3; € A. For definiteness suppose that £ < m. Then, assuming that
we have chosen p,, = b;41 at the outset,

(Uz‘bi+1ui_+11)_1 = Ui+lbi_+11ui_1

= (Bupy o1 ar(prfepy oy oy
oqaz(pafBspy tag ) (araz) ™!
onas...ar—1(pe—1Bepy tay N aras . oop—y) !
.oqQs ... Ozg(pgﬁg+1pz_:1)(0z10z2 . ozg)_l

.oqQs ... ozg(pm_lﬁmbi__i_ll)(oqozg . ozg)_l.

Each of the bracketed products involving the p; are relators in G of length at most
2k + 2 (see Figure 1, below).
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Figure 1
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It follows therefore that the number of such ”basic” relators is finite. Moreover
we have expressed every relation w as a product of conjugates of these basic relators
and ug and ug ', both of which are again relators since they map to 1 under . This
completes the proof that G is finitely presented.

Next we prove that G satisfies a quadratic isoperimetric inequality.
Using the notation above, it follows from Lemma 2 of II.B.1 that there is a
constant i such that

Ou;) <l ui—)+h (=1,...,n).
So if l(ug) = z, then it follows that
Uu;) <th+ z.

Now we proved above that

w = uo_l(uoblul_l)(ulbguz_l) . (un_lbnugl)un.
Moreover we proved also that each of the products ui_lbiui_l can be expressed as a
product of m conjugates of what we termed basic relators, where m is the maximum
of l(u;—1), (u;). It follows therefore that ui_lbiui_l can be expressed as a product
of at most th + z conjugates of the basic relators. Hence w itself can be expressed
as a product of conjugates of at most

2—|—Z(ih—|—z) < cn?

=1

relators, where ¢ is a constant. This proves the second part of the theorem.
The last part of the theorem follows now immediately from Lemma 1 of this
section.

6. Negatively curved groups are automatic.

Suppose that G is a negatively curved group. Then there exists a finite set X’
of group generators of G such that every geodesic triangle in the Cayley graph T’
of G relative to the set of generators A’ is J-thin for some 4. Again it is worth
noting that because of the characterisation of negatively curved groups in terms of
linear isoperimetric inequalities, given any finite set of generators of GG there is an
appropriate choice of § such that very geodesic triangle in the Cayley graph relative
to this set of generators is §—thin as well. The following lemma holds.

Lemma 1. Any pair of geodesics v and ' which begin and end a distance at most
1 apart are k-fellow travellers where k = 46 + 1.

Proof. Suppose that v,~' begin at the same vertex ¢ and end 1 apart. Then ~,~'
and an edge form a geodesic triangle. At each point ¢ in time, we claim that
d(~(t),~'(¢)) < 24. There are a number of cases to consider. Suppose first that there
is a geodesic path A of length at most § from ~'(¢) to v(s). If s < ¢ then s >t —§;
otherwise there is a path from ~(¢) to ¢ which is shorter than ¢, contradicting the
fact that v is a geodesic. Consequently there is a path from '(¢) to ~v(t) of length
at most 29 (see Figure 1, Case 1, below).
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If s > ¢ then there is a geodesic from ~/(t) of length at most d to one of the other
two sides in the geodesic triangle drawn in Figure 1, Case 2 or Figure 1, Case 3. A
similar argument to the one just given shows that again d(y(¢),~7'(t)) < 2§ holds
in Figure 1, Case 2 and a more direct argument holds in the other case (Figure 1,
Case 3).

If v,~' begin and end a distance 1 apart then they, together with two edges, form
a geodesic quadrilateral. If we add a geodesic diagonal, say A, to this quadrilateral,
we obtain two geodesic triangles (see Figure 2). It then follows from the case above
that d(~(t), A(t)) < 26 (see Figure 2). Now moving backward along A to A(t) is the
same as moving forward along A to A(u), say. Similarly moving backward along ~/
to 4/(t) is the same as moving forward to 4'(v). Notice that |u — v| < 1. It follows
therefore that

d(A(1),7'(1)) < d(Mu), 7 (u)) + L.
But d(A(u),~'(u)) < 24. Hence d(v(¢)),~'(t)) <46 + 1.
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Figure 2

Next we prove the

Theorem 1. Let G be a negatively curved group, let X be a finite set of group
generators of G and let A = X U XL, Furthermore let L be the set of all geodesic
words over A. Then (A, L) is an automatic structure for G, i.e. negatively curved
groups are automatic.

Before giving the proof of Theorem 1, we would like to point out that Gromov
defines a group with a Markov property as one with a rational structure where the
language is prefix closed, i.e. closed under initial segments. He then proves that in
a negatively curved group the set of geodesic words has this property ([Gr] 5.2.A,
8.5).

Proof. We follow the proof given by Thurston in [T]. Let G be the negatively group
given above. As usual, let

A=xux"

Then A = {aq,...,a,}, say. Let us put ap = e. Our objective is to prove that the
set L of all geodesic words over A is the language of an automatic structure for
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G. This will be accomplished indirectly by constructing a regular language K over
A with the k-fellow traveller property, where k = 46 4+ 1 and then proving that K
coincides with L.

Let Bj(1) be the set of elements of G of length at most k as usual. We define
a finite state automaton which will accept all geodesic words and nothing else, as
follows.

The set of states is the set of all subsets of Bi(1), together with a fail state f.

The initial state is {1}.

Define the transition function as follows, for @ € A: 7(S,2) = fif T € S.
Otherwise, 7(S,2) ={x7'ga |g € S,a € AU{ao}} N Bi(1).

All states except f are accept states. Notice that the identity element 1 is in
each live state.

Let K be the language accepted by this automaton.

We claim that no geodesic word is rejected by this machine. To see this, let
w =21 ...2, be a word which is rejected. Let S; be the state of the machine which
is reached after reading the first j letters of w. Suppose that S,, # f = Sp+41.
Then 2,41 € S;. But this implies that we can find by,...,b,, € AU {ap} so

that zm' ... :1:1_161 ooy = Typg1. Hence x1 ... 241 1n not geodesic, and perforce
neither is w. Thus rejection takes place only when a word can be expressed by a
shorter sequence of letters.

We show by induction that this automaton accepts only geodesic words.

The empty word is accepted, as are all words of length 1 (i.e. generators) which
are not trivial in the group. Now suppose that for all accepted words, the initial
segments of length < n are geodesic, and proceed by induction on n.

Let w = vay € K where ((v) = n—1 and a € A. Suppose that va is not
geodesic, then there is a geodesic word v’ € K such that va = v/, and ((v') < {(va).
Moreover, as v is geodesic, {(v') = n —1 or n — 2. Now v and v’ are k fellow
travellers by Lemma 1, so for each ¢ we have v(¢)~1v/(t) € B(t). If ((v') = ((v), @
is in the state reached when reading the first n — 1 letters of v, and so the word w
is not accepted. If ¢(v') = n —2, then g = v ' v/ _, € Bi(1), and g € S,_a, the
state the machine is in after reading the first n — 2 letters of v. Let b be the last
letter of v . As the machine accepts the word va, b=1ga=! = 1 is in following state

Sn—1. So b~lgag = @ also lies in the state S, _1, and hence w is not accepted.

7. Asynchronously automatic groups.

Many of the results that we proved about automatic groups can be carried over
also to asynchronously automatic groups. This is the object of the present section.
We will content ourselves here with sketching many of the proofs, leaving a good
deal more of the work to the reader than we have up till now. We have, nevertheless,
contrived to arrange things in such a way that the theorems proved in III depend
only on results that we will have fully proved somewhere in this paper. Again our
exposition is based on that of Cannon et. al. [CEHPT].

Suppose now that G is an asynchronously automatic group. Let (A, L) be an
asynchronously rational structure for GG, where as usual

A=H{ay,..., a4}

We prove first an analogue of the uniqueness property of automatic groups.
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Lemma 1. Suppose G has the asynchronously automatic structure described above.
Then G has another asynchronously automatic structure (A, L") over A where L'
18 a reqular set contained in L and every element of G has a finite number of
representatives i L.

In fact one can choose L' in such a way that every element of G has exactly one
representative in L’ (see [CEHPT]).

Proof. Let M be a finite state automaton such that L(M) = L, let ag = e, let Tj
be a two tape automaton such that L(Ty) = L,, and let My be the finite state
automaton associated to Ty. Let & be the number of states of Tj. If some element
g € G has an infinite number of representatives in L, there are words u,v € L such
that @ = © = ¢ and {(v) > k™. Now (u,v) € L(Tp). So there is a shuffle w of
(ue,ve) such that w € L(Mg). Therefore the path traced out by w in the state
graph of My from the start state to an accept state, contains a loop based at some
state s € Sy which involves only states in S3. Let z be the word consisting of the
successive labels on the edges on this loop. Then z is a subword of v:

UV = V1L20Ug.

It follows that ‘
(u,v1z'vy) € L(Tp) (1 =0,1,...).

So, in particular, o703 = vy zv3 and hence Z = 1. We now build a non-deterministic
finite state automaton M’ which rejects those words in L which contain such sub-
words z with Z = 1 and accepts the other words in L. The idea is to choose the
states of M so as to be able to keep track of all sequences of states in So of length
at most k, enabling us to reject the unwanted subwords z. Notice that we have
used € for the end of tape symbol in our two-tape automaton Ty. Since we will have
need to make use of e—transitions here as well, we will use the symbol T in place
of € in the definition of our non-deterministic automaton. We are now in a position
to define M". First we take the set of states of M' to be

S1USyU{(s,u) |s € Sz,u € A" u # e, L(u) <k,
su; € Sy all 1, su; #su; (0<i<j<k)}

Here u; denotes the ¢ — th initial segment of u. The initial state of M is sg, the
initial state of My. The set of accept states of M’ consists of the set of accept
states of My together with those states of M" of the form (s, u) such that 7(s,u) is
an accept state of My, where here 7 is the transition function of M. The transition
function 7”7 of M'"" is then defined as follows:

7(s,a) for all a € A,
= (s,a) if 7(s,a) € Sy, 7(s,a) # s
s,a)if 7(s,a) € 54

T"(s, T
!

Q

= 7(s,ua) if sua € Sy

) if 7(s,ua) € Sy

and 7(s, (ua);) are all distinct (1 < k)
)
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In all other cases 7 is undefined. Now let M’ be a finite state automaton with
the same language as M''. Then

Ly N (L(M") x L(M")) (i=0,...,q)

is aysnchronously regular by Lemma 1 of I1.B.7, because each L(; is asynchronously
regular and L(M') is regular. This completes the proof on putting L' = L(M').

Now suppose that T is an asynchronous finite state automaton over A and let
M Dbe the finite state automaton that is associated to T'. We make use here of the
notation above, denoting by T; a two tape automaton such that L(T;) = L(;). Let
u=u'e,v =v'e(u', v € A*) and suppose that w € L(M) is such that &(w) = (u,v),
where @ is the usual mapping from L(M) into (AU e)* x (AU e)*. If we again
denote the ¢ — th initial segment of w by wy, then ®(w:) = (ug(s), vy(r)), Where
@(t),¥(t) are non-decreasing functions from N into N. Consequently at time ¢, T
will have read (u;s(t),vip(t)) as it goes through the process of accepting (u,v). We
shall avail ourselves of all of this notation in the statement of the following lemma.

Lemma 2. Let G be an asynchronously automatic group and let A= {aq,...,a,}
be a set of monoid generators of G. Put ag = e, let (A, L) be an asynchronously au-
tomatic structure for G and let T; be a two-tape automaton with L(T;) = L4, (2 =
0,...,q). Suppose that k is the mazimum number of states in the two-tape automata

Ty,...,T,. Then the following hold.
(1) If (u',v") € L(T3), then in the Cayley graph T 4(G) we have

Ayay Vo) < F

for every t.
(2) If (u/,v") € L(T;) then there exists a word v'" such that (u',v") € L(T;) and

T; reads at most k letters from v"' before reading a letter from u'.

Proof. We start out with the proof of (1). To this end let us view AU {e} as a
monoid generating set for G by extending the usual map from A into G to one from
AU{e} into G by defining € = 1. Let M, be the finite state automaton associated to
T;. Then for each ¢, there is a path in the state graph of M; from sgw; to an accept
state, of length at most & — 1. This implies that there is a word z over AU {e} of
length at most £ — 1 such that w;z is accepted by M;. It follows that there exist
21,72 € (AU {e})* such that g Z1 = Uyq)22a; where {(z1) 4+ ((22) = {(z). This
completes the proof of (1).

In order to prove (2), suppose that T; reads a sequence of at least k letters from
v'. Then the corresponding path in the state graph of M; contains a loop which is
defined by a subword z, say, of v’ and also by the same subword of w. If we omit
this subword from w, the resultant word w’ is again in the language of M;. Then
O(w') = (u'e,v""€) and so (uv/,v") € L(T;) with ((v") < ((v"). It follows from this

argument that there is an accepted pair as claimed.

Next we prove a result related to one proved in Cannon et. al. [CEHPT, “char-
acterizing asynchronous”]. They prove that a rational structure with a “monotone
relation” and a “departure function” is an asynchronous automatic structure. Their
departure function corresponds to the conclusion of Lemma 3. The asynchronous
k-fellow traveller property used here corresponds to their monotone relation.
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Theorem 1. Let G be a group, (A, L) a rational structure with a finite number of
representatives for each element of G. Now suppose that in addition there exists
a constant k such that if u,v € L and if ©u = va; for some 1, then u and v are
asynchronous k-fellow travellers, where as usual {ay,...,a,} = A. Then (A, L) is
an asynchronously automatic structure for G.

Recall that two words u,v € A* are said to be asynchronous k-fellow travellers
when there exist monotone functions ¢ and ¢ (depending on v and v) such that

d(u<¢<t>>,vw<t>>) <k (120)

where here d denotes the distance in the Cayley graph I' of G relative to the set
AU {e} of generators.

Theorem 1 together with Lemma 2, (1), is the counterpart for asynchronously
automatic groups of the characterisation of automatic groups in terms of k-fellow
travellers. It can be used to obtain the corresponding theorems for asynchronously
automatic groups as those already proved for automatic groups. Thus for example,
one can prove that the direct product and the free product of two asynchronously
automatic groups 1s again asynchronously automatic, that the property of being
asynchronously automatic 1s independent of the choice of generating set and that a
group s asynchronously automatic if and only if every subgroup of finite index s
asynchronously automatic.

We need one more fact before we can prove Theorem 1.

Lemma 3. Suppose that (A, L) is a rational structure for the group G and that
each element of G has only finitely many representatives in L. Giwen any fized
positive integer h there are at most finitely many z such that vzy € L for some
choice of x and y and d(1,Z) < h.

Proof. Suppose that the contrary conclusion holds. Then there exist infinitely many
distinct z; such that zZy = Z3 = ... and z;z;y; € L for a suitable choice of x;,y;.
Consequently there exist infinitely many such z;, say 21, z2,... which begin at the
same state and end at the same state in the state graph of a finite state automaton
M with L(M) = L. It follows then that the words x1z1y1, %1221, ... all belong to
L. But T1z1y7 = 712291, - - - , contradicting the assumption that each element of G

has finitely many representatives in L. This completes the proof of the lemma.
We are now in a position to prove Theorem 1.

Proof of Theorem 1. We must show that L=y and L(;y are asynchronously regular
for each ¢. Now let

J(1) = {(u,v) | u,v € A% 0 = vag}.
Then
L(i) = J(l) N (L X L)
It suffices therefore, by Lemma 1 of II.A.7, to prove that J(7) is asynchronously
regular. We will accomplish this by building a two tape automaton T; such that
L(T;) = J(i). To this end observe that if u,v € A* are asynchronous k-fellow

travellers then, by definition, there exist monotone functions ¢ and ¢ (depending
on u and v) such that

d(u(9(t)), v(¢(t)) < k (t = 0),
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where here d denotes the distance in the Cayley graph I' of G relative to the set A
of generators, as explained previously.
Now suppose that for some pair of integers m and n,

d(u(m),v(n)) <k,

with m = é(to), n = ¥(t1). We claim that there is a bound K independant of
u, v, m,n so that [1(t1)—1(to)| < K. To see this, notice that d(u(p(tg)), v(¢(tg))) <
E so that d(v(¢(to)),v(¢(t1))) < 2k. But there are finitely many subwords of
accepted words representing any element of length 2k by lemma 3. We take K to
be the length of the longest of these subwords. We will also set K’ to be the length
of the longest word which represents an element of length 2k + K 4 1 in the group,
and is a subword of some accepted word.

We will use this property to build our two tape automaton 7T; in much the
same way as we built the comparator automata before in the proof of Theorem 1 of
I1.B.2. T; will be defined using the ball B = Bjy gy xr41(1) of radius k+ K + K'+1
centered at 1in I". Roughly speaking T; operates as follows. Given a pair (u,v), the
machine starts by reading K + 1 letters from v; now K +1 > d(u(0),v(K +1)) > k.
The machine then reads m letters from w, where m is the smallest number such
that d(u(m),v(K + 1)) = k. By lemma 3 and the above discussion, we know that
m < K'.

We now show how the machine should proceed from such a situation. Suppose
that while reading u, the machine reaches a point at which it has read m letters of
u and n letters of v and discovers that d(u(m),v(n)) = k. The machine continues
by reading K + 1 letters from v. We take n’ = n+ K + 1. By the above discussion,
there is m’ > m so that d(u(m’),v(n’)) = k, and m’ — m < K'. Thus the machine
continues by reading at most K’ letters of v and discovering the smallest m' > m
such that d(u(m'),v(n')) = k. If at any time an end of tape symbol is encountered
(necessarily on the right hand tape), T; switches to the other tape and continues
to read it until the second end of tape symbol is finally read.

More precisely, we define the finite state automaton M, associated to T; as
follows. The set of states S of M; 1s defined as follows:

S=Bx{,0,0,. .., K+1} U{f A}
where f is a fail state, and A is the unique accept state. We define then
Sy =Bx{l,0'},S; =Bx{0,..., K} U{f A}

The transition function 7 of M; is defined as follows, where throughout a € A, g €
B.

7((g,0),a) = (@ ‘g, 0) if (@ 'g) > k
((g,0),a) = (@ 'g,0) if (@ 'g) =k
m((g,7),a) = (ga,r + 1) f0<r < K
(9. K),a) = (ga.l) <k

m((g,r),a) = fif l(ga) > k+ K + K' + 1
7((g,0),€) = (g,7")

((g,7),€) = (9,0 ) if 0 <r <K
((g,0"),a) = (@ g, (")
T((a;, l"),e) = A.
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As always the fail state f is always taken to itself by the transition function. The
start state of M; is (1,0) and A is the unique accept state. For the equality language
L=y, the only state leading to the accept state is (1,(’). This completes the proof
of Theorem 1.

We prove next the analogue for asynchronously automatic groups of Theorem 1

of II.B.5.

Theorem 2. Let G be an asynchronously automatic group. Then the following

hold:
(1) G s finitely presented;
(2) G satisfies an exponential isoperimetric inequality;
(3) G has a solvable word problem.

We will closely follow the proof of the corresponding theorem, Theorem 1 of
I1.B.5, for automatic groups. Let us therefore assume that A is a finite set of group
generators for G and that A = X U X~!. G has an asynchronously automatic
structure (A, L) over A since the property of being asynchronously automatic is
independent of the choice of generators. Let A = {ay,...,a,}, ap = e and let T}
be a two tape automaton with L(T;) = L(,,). Let k be the maximum number of
states in these two-tape automata. Now suppose that

w:blbnEA*

is a relator in G. We choose representatives u; of by ...b; for 1 = 0, ..., n as follows.
First we take ug to be a word representing the identity element of G. Next, suppose
that u; has already been chosen. Then we choose u; 1 so that (u;,u;41) € L(T}),
where here j is defined by a; = bi_l, and so that T; reads at most k-letters from
u;+1 before reading one from w;. Notice that this choice is always possible because
of Lemma 2 of this section. Since u; and ;41 are asynchronous k-fellow travellers,

Ouiyr) < El(u;) + 1. It follows that for each ¢,
O(u;) < k'(0(ug) +1).

We now simply follow the rest of the argument as detailed in the proof of Theorem
1 of I1.B.5 to complete the proof of the other parts of the theorem.
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1. Amalgamated products of automatic groups.

We recall first some facts about generalised free products. A group G is said to be
an amalgamated product of its subgroups X and Y with the subgroup Z amalgamated,
or a generalised free product of X and Y amalgamating Z if the following conditions

hold:

(1) G is generated by X UY;
(2) XNY = Z;
(3) every “strictly alternating” X UY product

Ty Tnyn L (0, € X =2, y; €Y = Z).

It follows that if we choose a right transversal 57 of Z in X, i.e. a complete set
of representatives of the right cosets 7 of Z in X containing the element 1, and
similarly a right transversal S; of Z in Y and if we put § = 57 U Ss, then every
element g € G can be expressed uniquely as a strictly alternating product

g=351...5.2 (s, €S—1,2€ 7).

By this we mean that if s; € 57 then s;11 € S; and similarly if s; € S, then
Si+1 € S1. Such a form is referred to as the normal form for g. Of course this form
depends on the choice of S and S3;. We refer the reader to the book by Lyndon
and Schupp [LS] for more details. We express the fact that G is an amalgamated
product of X and Y with Z amalgamated by writing

G:X*ZY.

It is not hard to formulate some rather general conditions which ensure that
an amalgamated product of two automatic groups is again either automatic or
aysnchronously automatic. The proofs of all of our other theorems about amalga-
mated products then comprise the verification that an appropriate subset of these
conditions hold in each instance.

We begin by recalling from the introduction that a subgroup Z of a group X
is an L(X)-rational subgroup of X for the rational structure (X, L(X)) for X (or
more simply a rational subgroup if L(X) is understood), if =1 (Z)NL(X) is regular
over X.

Suppose now that we denote the set of right cosets *Z of Z in X by X/Z. We
term a regular set L(X/Z) contained in L(X) a reqular language with uniqueness
for X/Z if the mapping

w—wZ (we L(X/Z))

is a bijection between L(X/Z) and X/Z.
The following theorem then holds.

Theorem A. Let G be the generalised free product of the automatic groups X and
Y amalgamating Z:
G=X *7 Y.

Let X be a finite set of monoid generators for X, let Y be a finite set of monoid
generators for Y, let (X, L(X)) be an automatic structure for X and let (Y, L(Y"))

be an automatic structure for Y. Suppose that the following conditions hold:

(1) Z is an L(X)-rational subgoup of X (and hence there is a regular language
L(Z) C L(X) with exactly one representative for each element of Z);
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(2) there is a regular language L(X/Z) with uniqueness for X/Z, contained in
L(X) and a regular language L(Y/Z) with uniqueness for Y/Z contained in
L),

(3) there is a constant k such that whenever u € L(Z) and v € L(Y') represent
the same element of Z, then w and v are k-fellow travellers in T xuy(G);

(4) there is a constant k such that of uw € L(X/Z), if v € L(Z) and w € L(X)
is such that wo = W then wv and w are k-fellow travellers in T'x(X); and
similarly if w € L(Y/Z), if v € L(Z), w € L(Y) and uwo = w then wv and w
are k-fellow travellers in T xuy(G).

Then G is automatic. If (3) and (4) are replaced by

(3") there is a constant k such that whenever u € L(Z) and v € L(Y') represent
the same element of Z, then u and v are asynchronous k-fellow travellers in
Cauy(G);

(4") there is a constant k such that if w € L(X/Z), if v € L(Z) and w € L(X)
18 such that uwv = w then uv and w are asynchronous k-fellow travellers in
Cx(X); and similarly of w € L(Y/Z), if v € L(Z), w € L(Y) and wo =@
then wv and w are asynchronous k-fellow travellers in I xuy(G).

Then G 1s asynchronously automatic.

Proof. As we noted in I1.LB.2 | we can assume, without any loss of generality, that
all of the languages above contain the empty word e. In addition the statement that
we can choose L(Z) so that it contains exactly one representative for each element
of Z can be justified by appealing to Proposition 1 of II.A.5 (cf. also the beginning
of the proof of Proposition of I.B.1), i.e. by taking the lexicographically least
elements in the regular language for Z that is guaranteed by the L(X)—rationality
of Z.

We note that (1) and (3) or (1) and (3') imply that Z is L(Y") rational. For
one may build a finite state automaton or (in the asynchronous case) a two tape
automaton whose language is {(u,v) | v € L(Y), v € L(Z), and w = v}. This
machine is based on the machine for L(Z) together with a finite neighborhood of
the identity in Y. We omit the details of the construction. Projection onto the first
factor of this regular (or asynchronously regular) language gives a regular language,
and this is none other than the set of words in L(Y") with values in Z.

Wenowput A=XUX L, B=YuYy,
L™(X/Z) = L(X/Z) —A{e}, LT(Y/Z) = L(Y/Z) —{e}

and

R=L"(X/Z)UL(Y/Z).

Then 1t follows from the remarks above about normal forms for the elements of G,
that the set L of words of the form

1 ... Tt

satisfying the following conditions
(1) ;€ R(1=0,...,m), ue€ L(Z);
(2) if r; € L7(X/Z) then riy; € L7 (Y/Z) and if r; € L7(Y/Z) then ri4q €
L™(X/Z)
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maps bijectively onto GG. We refer to these words in L as strictly alternating
R—products. Now observe that

L=L(X/Z) (L‘(Y/Z)L‘(X/Z)) L(Y/Z)L(Z).

Consequently L is a regular language with uniqueness for G. Hence L— = A(L)
is regular. Our objective is to prove that, in the synchronous case, the sets L,
are regular and, in the asynchronous case, the sets L, are asynchronously regu-
lar (x € AU B). The proofs are very similar. In both cases we use the k—fellow
traveller property to prove that (A U B, L) is either an automatic structure or an
aysnchronously automatic structure as the case dictates. Thus in the asynchronous
case we appeal to Theorem 1 and Lemma 2 (1) of I1.B.7, while in the synchronous
case we appeal instead to Theorem 1 of II.B.2. We will deal here with the synchro-
nous case and leave the other to the reader. For definiteness we assume that the
E specified in (3) and (4) has been chosen large enough to ensure that L(X) and
L(Y') have respectively the k—fellow traveller property in the Cayley graphs I'(X)
of X relative to & and I'(Y') of Y relative to ).

Thus our objective is to prove that if ¢ € X U )Y and if w,w’ € L are such that
W = w'c then w and w’ are 3k-fellow travellers in T', where k is the constant above.
The proof is divided up into a number of cases, which depend on the form of w and
whether ¢ € X or ¢ € ).

For definiteness let us express w and w’ as alternating R—products:

!
W=7T1...TpU, W = S81...5,0

where here the r;,s; € R and u,v € L(Z).

Case 1. m=0and c € X.

If n =0, then w = v¢ holds in X. Therefore u = w and v = w’ are k-fellow
travellers in I'y(X) and hence also in I'(G). If n = 1, then 3570¢ = w. Choose
wy € L(X) so that 570 = wy. Then by condition (4), s;v and wy are k—fellow
travellers in I'. Now u and w; both lie in the language of X and w = wye. So
wy and u are k—fellow travellers in I'(X). Consequently w’ = s;v and w = u are

2k—fellow travellers in I'(G).

Case 2. m=0and c € ).

Since L(Z) C L(X) it is clear that the conditions in the statement of Theorem
A are not symmetrical in X and Y. So it makes sense to treat this case in detail
also. We proceed as above. If n = 0, then w = ve. Choose wy € L(Y) with wy = 7.
Then v and wy k—fellow travel in I', by condition (3). Choose next wy € L(Y') so
that wy represents the Y—word wyc. Then w; and ws are k—fellow travellers in
I'(Y). Consequently v and wq are 2k—fellow travellers in I'. But wy € L(Y') and
Wz = u. So, by condition (3), we and u are k—fellow travellers in I'. But this then
means that w’ = v and w = u are 3k—fellow travellers in I.

Cases 1 and 2 actually cover all the salient points in the proof of Theorem A.
We will, however, detail the remaining cases and deal with them as is appropriate
here.

Case 3 (a). m >0, ry,, € L(X/Z), s, € L(Y/Z), c € X.
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It follows that m — 1 =n,r;y = 81,...,"m—1 = Sm—1 and

Tmt = UC.

Now choose wy; € L(X) so that wy = 7,u. By condition (4) r,u and wy are
k—fellow travellers in I". Now wy = v¢ and v € L(X). So w; and v are k—fellow
travellers in I'(X'). Hence r,,u and v are 2k—fellow travellers in I'. But this implies
also that w and w’ are 2k—fellow travellers in I'.

Case 3 (b). m >0, r,, € L(X/Z), s, € L(X/Z), c€ X.

It follows here that m =n,r; = s1,...,7m—1 = Sm—1 and
Tl = S;mUC.

Let wy € L(X) be a representative of s,,,v. Then by condition (4), s,,v and wy are
k—fellow travellers. Let wy € L(X) be a representative of wye. Then w; and ws
are k—fellow travellers in I'(X'). But w3 = Fpu. So by condition 4, wy and rpu
are k—Tfellow travellers in I'. Therefore s,,v and r,,u are 3k—{fellow travellers in I'.
Hence w and w’ are also 3k—fellow travellers in T'.

Case 4 (a). m >0, rp, € L(Y/Z), s, € L(Y/Z), c€ V.

This case is very similar to Case 3 (b) above, except that we have to use condition
(3) at some stage in the proof, as we did in Case 2, above. That is, for v € L(Z),
we first find v’ € L(Y) such that ¥ = v’. By condition (3), v and v’ are k-fellow
travellers.

Case 4 (b). m >0, ry, € L(Y/Z), s, € L(X/Z), c € V.

Here the argument is analogous to that given in Case 3 (b), again maiking use
of condition (3), as in Case 4 (a).

The cases considered above are the only ones that can arise and so this completes
the proof of the theorem.

The only point that has to be made about the corresponding proof in the asyn-
chronous case is that if w and w’ are asynchronous k—fellow travellers in I" and
if w’ and w” are also asynchronous k—fellow travellers in I', then w and w" are
asynchronous 2k—fellow travellers in I'. The Theorem follows on application of

Theorem 1 of I1.B.7.
2. Amalgamated products of abelian groups.
We now use Theorem A to deduce the following

Theorem B. Let G be the generalised free product of the finitely generated abelian
groups X and Y amalgamating Z:

G:X*ZY.

Then G is automatic.

Proof. 1t follows from the basis theorem for finitely generated abelian groups, that
Z 1s a direct factor of a subgroup X; of finite index in X and similarly a direct
factor of a subgroup Y; of finite index in Y:

X1 =ZxH,YI=27ZxK.
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Let (Z2,L(Z2)), (H,L(H)) and (K, L(K)) be automatic structures with uniqueness
for Z, H, K respectively, chosen so as to contain e¢. Furthermore let s1 = 1,...,38,,
and t; = 1,...,t, be complete sets of representatives of the cosets of Xy in X and
Y] in Y, respectively. Let

A=Aas,...;an,} UHUZ

and

B=1{bsy,....b, UK U Z.

A and B can be viewed as monoid generating sets for X and Y respectively in the
obvious way, with the a; mapping to the s; and the b; mapping to the ¢;. We now
put

L(X) = U a;L(H)L(Z), L(Y) = | b:L(K)L(Z)

1=1 =1

where we define a; = b; = e. Then L(X), L(Y) are languages with uniqueness for
X and Y respectively. It follows immediately that Z is an L(X)—rational subgroup
of X and that we can take L(X/Z) = o, a;L(H) and L(Y/Z) = |-, b;L(K).
The conditions laid down in Theorem A are immediately satisfied and therefore the
prootf of Theorem B is complete.

3. Quasiconvexity and negatively curved groups.

Before turning our attention to amalgamated products of negatively curved
groups we need to introduce some additional notions. To this end let G be a
group and let A be a monoid set of generators of G. We can therefore think of
A as a set of group generators of G. Then I' 4(G) is, as usual, the Cayley graph
of G with respect to the given set A of group generators of G. A geodesic v in
I' can be represented by a word w over 4 U A, We sometimes refer to such a
word as a geodesic word. We define ~v(t) = w(t) for every t > 0 and 7 = w. If
g € G, then there exists a shortest word w over AU A™! with w = g. We define
the length |g|la of g, relative to A, to be the length of such a word w. So |g|4 is
the length of a geodesic word over AU A™! representing g. We denote the distance
function in I' 4(G) by d4 or simply by d if there is no risk of confusion. We have
already discussed the notion of a rational subgroup of an automatic group. We
define now, using the notation introduced above, two related concepts which turn
out to coincide in the case of a negatively curved group.

Definition. A subgroup C of G is termed quasiconvex (with respect to A) if there
18 an € such that

d(7(t)7 C) <e€
for every geodesic v in I, with 7 € C.

Now suppose that C is a finite monoid set of generators of C'. Then, as above, if
¢ € C, then |c|¢ denotes the length of a geodesic word w over C with w = ¢. This
allows us to formulate our second definition.
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Definition. Let G and C be the groups described above. We term C quasigeodesic
(with respect to A and C) if there exists a positive real number X\ such that

lgla > |gle/A

for every g € C.

The notion of quasiconvexity may well be dependent on the choice of generating
set in some instances. However in the case of negatively curved groups this is not
the case, because of Theorem 1, below. On the other hand, being quasigeodesic is
always independent of the choice of the generating sets A and C. For if A" and C’
are a second pair of monoid generating sets for G and C respectively, then there
are constants ky and ko such that

lglar(g) > |gla/k1, E2lgle > |gle(g).

It follows that if C' is quasigeodesic with respect to A and C then it is also quasi-
geodesic with respect to A’ and C’ with constant \' = k1ko .
The following theorem then holds.

Theorem 1. Let G be a negatively curved group and let A be a finite set of monoid
generators of G. Furthermore, let C be a subgroup of G and suppose that C is a set
of monoid generators of C which is contained in A. Let L be the set of all geodesics
in the Cayley graph T' =T 4(G) of G. Then the following conditions are equivalent.

(1) C s quasiconvex with respect to A;

(2) C s quasigeodesic with respect to A and C;
3) C s L-rational.

(

The proof of Theorem 1 depends on some results of Gromov [Gr] and Gersten
and Short [GS3]. We will also need the following notion of Gromov [Gr].

Definition. Let A and € be non-negative real numbers. Then a word (or path)
w=>y...b, (bj € AUATY) in the Cayley graph T A(G) is termed a (), €)-geodesic
of

[T < (u) < Ala +e

for every subword u =b;...b; (0 <1 <j<n)ofw. If e =0 we refer to w as a
A-quasigeodesic.

The following result of Gromov [Gr] holds (cf [GH], [CDP], [ABC]).

Lemma 1. Let A be a finite set of monoid generators of the negatively curved
group G and let T denote the corresponding Cayley graph of G. Then for each pair
of non-negative real numbers X\, € there exists a non-negative real number € (A, e, )
such that every (\, €)-quasigeodesic w lies in an €' -Hausdorff neighbourhood of every
geodesic v in I' for which v = w and conversely.

Proof. We give an outline of the proof given in [ABC]. The proof relies on the
following Proposition which is in fact another characterization of negatively curved
spaces.
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Proposition. Let ' be the Cayley graph of a negatively curved group and suppose
triangles in I' are & thin. Then there are constants d > 0 and k > 1 depending only
on & with the following property: Suppose v and v' are geodesics emanating from a
common point g € I, each of length s +t. Suppose also that d(~(t),~'(t)) > d. Let
p be a path from ~(s +1t) to v'(s +t) such that d(g,p) = s +t. Then ((p) > k°.

We take d = 26 4+ 1. Now let o be a geodesic running from (¢ + s) to v'(¢t + s).
Let P denote the midpoint of p and let oy be a geodesic running from the begining
of a to P. Let a; be a geodesic running from P to the end of a. Let b be a finite
sequence of ones and zeroes, and suppose that the geodesic «j has been defined
and has its origin and terminus on p. Let P, be the midpoint of the segment of p
whose origin and terminus are those of ay. Now let apg be a geodesic running from
the origin of ap to Pp, and let a1 be a geodesic segment running from P to the
terminus of ay.

At each stage, we have subdivided p, and after at most n = log,(¢(P)) + 1 such
subdivisions, we have ((a;) < 1.

Now ~, v and « form a geodesic triangle. Hence ~(¢) is within § of either 4’ or
a. But d(v(t),~'(t)) > 26 + 1 and consequently d(~y(t),v") > §. Hence, there is a
point vg on « such that d(y(t),v0) < 4. Now for each binary sequence b (possibly
empty), ap, apo and ap; form a geodesic triangle. Thus, if we have found v, on
ap, we can find v,,11 on either ayg or apy with d(ve,, vmy1) < 6.

Now d(v,,p) < 1, and p lies outside the interior of the ball or radius s + ¢
around ¢g. Hence d(v(t),v,) > s — 1. On the other hand, as the vertices {v;}
verify, d(y(t),v,) < (n + 1)§. But this shows that ((p) > 2573, Hence ((p) grows
exponentially in s and & may be chosen appropriately.

Returning to our lemma, we first show that v stays close to w. To see this, let
¢ be a point of v which acheives the maximum distance from w. Say, d(g,w) = D.
In particular, the interior of the ball of radius D around ¢ misses w. Let a and b
be the points of v at distance 2D from ¢. (They may be taken to be the origin or
terminus of v respectively if either of these points is within 2D of g.) We now take
~ and 4’ to be the segments of v running respectively from ¢ to a and g to b. We
take p = yuz where u is a subpath of w, and y and z run respectively from a to
w and from w to b. We may take each of y and z to have length at most D. Now
if D> % then ((p) is exponential in D, which forces ((u) to be exponential in D.
On the other hand, [u| < 6D, and since w and hence u is quasigeodesic, this means
l(v) < &;’E. Hence, D is bounded, since an exponential function must eventually
surpass a linear one.

Let D' be the bound we have just found. Let N = Np/(v) ={q | d(q,v) < D'}.
Suppose w does not lie in the interior of N. Let u be a component of the closure of
w \ Int(N). Then the origin and terminus of « are within D’ of points a and b on v.
Let x and y be the components of w \ u. Then each point of v between a and b is
within D’ of either x or y. But by continuity of distance and connectedness of the
interval, we can find a point ¢ between a and b so that d(c,x) < D" and d(¢,y) < D’
Let the points of # and y realizing these distances be ¢’ and b’. Then d(a’,b") < 2D’
< 2k

and consequently ((u) . Now each point of u is within é(z—u) + D' of v, so we

'
can take ¢ = % + D'
We are now in a position to prove Theorem 1.

First we observe that it follows from the theorem of Gersten and Short [GS3]
alluded to above, that the conditions (1) and (3) are equivalent. It suffices therefore
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to prove that the conditions (1) and (2) are equivalent.

We prove first that (1) implies (2). We need to prove that there exists a non-
negative real number A\ such that for every ¢ € C, |gla > |g|c/N. By hypothesis,
there exists an € such that every geodesic in I' that ends up in C stays within e of

C'. Define
S={c|leceC, |c|Ja <2e+1}.
Then S is a finite set. We define
A = max{|c|]¢ | c € 5}.
Now let ¢ € C and let v be a geodesic in I'4(G) of length n, say, which starts at
1 and ends at g, i.e. ¥ = ¢g. We “shadow” ~ by points p(t) € C,0 <t < n where
the p(t) are chosen so that da(v(t),p(t)) < e. In particular, we choose p(0) = 1

and p(n) = g. Observe that for 0 <t < n, da(p(t),p(t + 1)) < 2¢ + 1. Therefore
de(p(t),p(t + 1)) < A. Consequently |g|l¢ < nA which translates into

lgla = lgle/A,
as required.

We now prove that (2) implies (1). Suppose then that v is a geodesic in I 4(G)
such that 5 € C. Let 4/ be a geodesic in I'¢(C') such that 4/ = 7. As each subword of
~"is a geodesic in T'¢(C'), the fact that the subgroup is A\-quasigeodesic means that
~"is a (A, 0) quasigeodesic in I'4(G). So, by Lemma 1, there exists a non-negative
real number € such that

da(y'(t),) <e(t=0)
Since ~/ lies in I'¢(C'), this completes the proof.

4. Amalgamated products of negatively curved groups.
We shall prove here our main theorem.

Theorem C. Let X and Y be negatively curved groups and let (X,L(X)),
(Y, L(Y)) be automatic structures for each consisting of geodesic words. Let

G=X *z Y
be an amalgamated product of X and Y amalgamating a subgroup Z that is rational
in both X and Y (with respect to the languages L(X),L(Y)). Then G is asyn-

chronously automatic. If, in addition, there is a constant k' such that for every
g € Z, and for every w € L(X), w' € L(Y) such that w =w' =g

w(t) —w'(t)|xvy <K,
then G 1s automatic.

The proof of Theorem C depends on a number of lemmas. Before we start out
on the proof of these lemmas we recall that if G is a negatively curved group, then
the language consisting of all geodesic words over AU A~! where A is a monoid
generating set for G, is the language of an automatic structure for G.

Choose finite sets of monoid generators X', Y, Z for X,Y., Z respectively so that

zZ CX.

If # € X let [x] denote the left coset ©Z of Z in X containing x. So [x] = [2/] if
and only if * = 2’z for some z € Z.

We remind the reader that if @ € X, then the X'-length ||y of « is the minimum
of the lengths of the words in (X U X ~1)* representing x

The following lemma then holds.
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Lemma 1. There exists a number K such that if v, 2" € X and [z] = [2] and each
of x,2" is of minimal X —length in [x], then x = 2’z with |z|z < K.

Proof. Suppose that Lemma 1 is false. Then we can find x, 2’ of minimal length
in [#] such that @ = 2’z where z € Z and |z|z is arbitrarily large. Since Z is a
rational subgroup of X, it is quasiconvex and also quasigeodesic, by Theorem 1 of
II1.3. In particular there is a real number A such that |z|x > |z|z/A. The reader
should for the rest of the proof refer to Figure 1, below, as needed. Let u be a
geodesic in I' v (X)) running from @’ to « with w = z. Then u is also very long. Let ¢
be either of the two vertices in the middle of u, if |u|x is odd, or the midpoint of u
otherwise. Since u is a geodesic, ¢ is far from both z and 2’. Let v, w be geodesics
in I'v(X) running from 1 to « and @' respectively. Then v, w and u form a geodesic
triangle, which is d-thin. So ¢ is close to at least one of v, w. Consequently there is
a short (i.e. length at most &) path p~!, from ¢ to, say, v. Let p~! meet v at v(n).
Notice that v(n) is far from z, for otherwise we would have a short path from ¢
to x, contradicting the assumption that u is long. Since Z is quasiconvex, we can
find a short path r of length less than a uniform bound € from ¢ to a geodesic h
representing z in I'z(Z). Hence if |z|z is sufficiently large, the path v, pr is shorter
than the length of  in I' v (X), where as usual v,, denotes the n —th initial segment
of v. But [v,pr] = [2], which contradicts the assumption that x is of minimal length
in [z]. This completes the proof of the lemma.



AUTOMATIC GROUPS AND AMALGAMS

Figure 1

59



60 G. BAUMSLAG, S.M. GERSTEN, M. SHAPIRO AND H. SHORT

Next we prove

Lemma 2. There exists a real number K' such that if x 1is not of minimal X —length
in [x], then for some z € Z with |z|z < K', |vz|x is less than |x|x.

Proof. Suppose the lemma is false. Then we can find an element @ € X such that
all shorter elements in [¢] are arbitrarily far from . In particular any shortest
element ' in [z] is arbitrarily far from @. The reader should refer to Figure 2 and
Figure 3, below, as the proof proceeds. Let v and w be geodesic words over X" with
v =ux,w =2 and let u be a geodesic in 'y (X) from x to a'.

Notice that @ = z € Z and hence |z|z and consequently also |z|y are arbitrarily
large. Since there are infinitely many choices for x, it follows that we can assume
also that |z |y is arbitrarily large. This implies that we can choose n so that v = v,?
where |t|y = 6 + € + 1, where § is the constant that comes from the fact that G
is negatively curved and the € is the constant that arises from Lemma 1 of III.3
on taking advantage of the fact that Z is quasigeodesic with associated constant
A. There is a path p of length at most § from v(n) to either v or w. There are
therefore two possibilities to consider.

Suppose first that p runs from v(n) to a point ¢ in u (see Figure 2). Let h be
a geodesic in ['z(Z) running from x to x’. Then there is a path r from ¢ to h of
length at most e. Now U,pr € [z] and (x(v,pr) < |x|x. But @ = v,prz’, where
'€ Z and |2'|z < AN(26 4+ 2¢ 4+ 1). This contradicts our initial assumption about
and the elements in [z] which are shorter than z.

Suppose next that p runs to w, say p meets w at w(m). Then we can write
w = wys (see Figure 3). So U,p = W,,. It follows that s is very long since u is
very long and p and # are short. Since w is no longer than v, it follows that w,,p~!
is shorter than v,, which contradicts the assumption that v, is a geodesic. This
completes the proof of the lemma.
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Next we prove

Lemma 3. Let X be negatively curved, Z a quasiconvexr subgroup of X. Let X be
a set of monoid generators for X and let L be the set of all geodesic words over
A=XUX. Let L(X/Z) = {w € L | w is lexicographically least in [w]}. Then
L(X/Z) is regular.

Proof. Since (A, L) is an automatic structure for X, L, is regular for every = € X.
Hence, making use here of the constants K and K’ obtained in Lemma 1 and

L = U L..

|2|z<K+K'

Lemma 2 above, so too is

Then by Proposition 1 of II.A.5
{w | £(w) < {(w") and w is lexicographically earlier than w’ whenever v(w,w’) € L'}|}

is regular. But this set is simply L(X/Z).

We are now in a position to prove Theorem C. Our objective is to show that
Theorem A can be applied under the assumptions given in the statement of Theorem
C. In view of Lemma 3 above, we are left with verifying that the conditions (3')
and (4') of Theorem A are satisfied. We deal first with (3').

We will need the following lemma which follows Cannon’s notion of “progression
in geodesic corridors.” [C]

Lemma 4. Let X be a negatively curved group, let X be a monoid set of generators
of G and letT' =Ty be the Cayley graph of G relative to the set X of generators. Let
A, € be positive real numbers, let u be a (A, €) quasigeodesic word over A =X UX ™!
and let v be a geodesic word over A such that w = . Let § be chosen so that
geodesic triangles in I' are d—thin. Then there is a positive number I = K(\,¢€,0)
depending on A €, and & but not on u and v such that u and v are asynchronous
K-fellow travellers in T'.

Proof. By Lemma 1 of the previous section, there is a real number ¢ = €'(\,¢,0)
such that the (A, €)-quasigeodesic u lies in a €'-neighbourhood of the geodesic
v. Thus for each ¢, there is a value s(t) such that d(u(t),v(s(t)) < €. Now
d( s(t + 1))) < 2¢’" 4+ 1 as v is geodesic, and we can choose s(0) = 0, and
(0( )) (v) Notice that this means that in any closed interval I = [a, a + ]
of ength B > 2€¢, (a > 0), if s(t) < «, there is some value of ¢ > ¢ such that
s(t') €

We now show that there is a constant K’ = K'(\, €, 9) such that when ¢’ > ¢+ K,
it follows that s(t') > s(t). Suppose that we have N > 0, ¢’ > t+ N and s(t') < s(¢).
Now choose " > t' such that s(t) < s(t"") < s(t) + 2¢’ + 1; then d(u(t), u(t”)) <
4’ +1. As uis a (M, €)-quasigeodesic, this means that [t —¢"| < 4\’ +1)+e= K',
thus bounding N.

Let p(t) = max{s(r) | » < t}. This is a monotone function function and for all
t, d(u(t),v(p(t)) < K'+ €, and p(t +1) — p(t) < 2¢' + 1. Now define the monotone
functions ¢ and v so that ¢(t) is constant during the time when ¢ increases from
p(t) to p(t + 1), and ¢ stays constant while ¢ increases by 1.

By construction we have that d(¢(t),1(t)) < K’ 4 3¢’ + 1. This implies that u

and v are asynchronous K-fellow travellers, as required.

»n
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We are now in a position to verify that condition (3') of Theorem A is satisfied.
We choose a finite set Z of monoid generators for Z. Now by Theorem 1 of III.3,
Z is A-quasigeodesic in X and also in Y, for a suitable choice of A\. This implies
that if z is a word over Z which is geodesic in the Cayley graph of Z, then z is a -
quasigeodesic in both X and also in Y. Suppose then that v € L(Z) and v € L(Y)
represent the same element of Z. Choose the geodesic z above so that w =7 = .
Then by Lemma 4, there exists a K such that v and z are asynchronous K -fellow
travellers in X and z and v are asynchronous K-fellow travellers in Y. Hence u and
v are asynchronous 2K -fellow travellers in G. So we can choose the k in condition
(3') to be 2K . This then verifies that condition (3') is satisfied.

Notice that the additional assumption of the present theorem is none other than
condition (3) of Theorem A.

Before completing the proof of the theorem, we need to recall the definition of
the tripod map. A geodesic triangle A in the Cayley graph I'y, of the negatively
curved group X with finite set of generators X, is d-thin, i.e each point on each
side of A lies within § of the union of the other two sides. Let the vertices of
A be x1,23,23, and let the sides be the geodesic segments [z;,z;]. We can find
three points z, x5, 2% in E?, the Euclidean plane with its usual metric, so that
dr(z;,xj) = dgz(,2%) for all 1 < 4,5 < 3. Thus 27,2y, v3 are the vertices of the
Euclidean triangle A’. Let the inscribed circle of A’ meet the side [z}, 2] at yx,
where {i,7,k} = {1,2,3}. The tripod map Tx associated to A is the identification
space obtained by identifying the segments [z}, y;] and [z}, y;] by the isometry fixing
xt, for all 7, j, k. Thus Ta is a tree with one branch point b, the image of the points
y;, and three segments emerging from b. The composite mapping A — A’ — Tx is
called the tripod map fa; here the first map A — A’ is the evident isometry and
the second map A’ — Ta is the identification map. A basic result is that under
our hypotheses on I'y, a geodesic triangle A is 40-thin, that is, the fibres of the
map fa are of the diameter at most 46 ([GH, page 40]). It follows that there is a
constant K such that all geodesic triangles in the Cayley graph are K-fine if and
only if the group is negatively curved.

We are left with the verification of condition (4’). We shall prove somewhat more,
namely that condition (4) itself is satisfied. This is the content of the following
lemma.

Lemma 5. There is a constant k > 0 such that if v € L(X/Z), v € L(Z),w €
L(X) and uwo = W then uv and w are (synchronous) k-fellow travellers in X.

Proof. We may assume that all geodesic triangles in I' are 4-fine. This means that
for each such triangle A the tripod map fa has all fibres of diameter at most 4.
Consider the geodesic triangle A in I' with sides u, % - v, and w. Here ¢ - v denotes
the left translate of the path v by the group element ¢ from the left action on I'.
The side u - v begins at u and ends at w. Let the points u(tp), u - v(€) and w(ty) be
the inner points of A. Hence ((w) = (u) + ((v) + 2e.

Recall that the inner points are the preimage of the unique branch point of the
tripod graph under the tripod map fa. Here € = {(u) — tg. The diameter of the
set of inner points is at most ¢ by the definition of é-fineness. As Z is quasiconvex,
there is a constant S such that v(e) is at distance at most S from some point in Z.
We note that e < 4§ + 5, since the opposite inequality would contradict the choice
of u as an element of least length in L(Z) representing its coset uZ. Note also that

lw) = l(u) 4+ l(v) — 2e = to + € + {(v). We shall show that we can take I in the
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statement of Lemma 5 to be 12§ + 25.

First note that for ¢t < tg we have d(w(t),u(t)) < 44. In this interval uv agrees
with u. Next note that for tg < t < #g 4 € we have d(u(t),w(t)) < 2e + 4§ <
12§ + 25 < K. This follows from the fact that u(tg) and w(tg) are inner points
of A and from the triangle inequality (since u and w are geodesics). Thirdly note
that for ((u) <t < l(u)+ € = tg+ 2¢e we have uv(t) = u-v(t — (u)). It follows that

duv(t),w(t)) =d(u-v(t —lu)),w(t)) <2445 < K

as in the case immediately preceding.

Fourthly assume that ¢t € [to + 2¢ = ((u) + €,0(uv)]. Here we have wv(t) =
u-v(t —(u)) and consequently d(uv(t),w(t)) = d(u-v(t — l(u)),w(t)).

We know that d(w(l(w) — s),u - v(l(v) —s)) < 44 for

0<s</lw)—tg=1Ll(v)—c¢

by the definition of inner points. Let s = {(w)—t. But {(v)—s = ((w)—l(u)—2e—s =
t — l(u) — 2¢, and thus we have that

d(uv(t),w(t)) = d(u-v(l(v) — s +2€),w(l(w) —s)) <2445 < 12§ 4 285.

These four cases exhaust the possibilities for ¢ in the domain of uv, and so we
have shown that uv and w are fellow travellers, as required. That is to say, we have
shown that condition (4) of Theorem A holds in X.

To complete the proof of Theorem C, it remains to show that the second part of
condition (4') of Theorem is satisfied. Suppose we are given w € L(Y), u € L(Y/Z)
and v € L(Z), so that W = wv. Then by condition (3'), which we established thanks
to Lemma 4, there is a word v" € L(Y") which is asynchronously fellow travels v in
T'xuy(G), such that © = v/. By the same argument as above w and uv’ are fellow
travellers in I'y(Y") and hence in ' yuy(G). Hence w and uv asynchronously fellow
travel in I'yuy(G). Hence condition (4") of Theorem A is verified.

Under the stronger assumption that condition (3) holds, v and v are synchronous
fellow travellers in I' yuy(G) and thus, so are w and wv, so that we have verified
condition (4) of Theorem A.

This completes the proof of Theorem C.

5. Cyclic amalgamations. Here we use Theorem C as the starting point in the
proof that

Theorem D. An amalgamated product of two negatively curved groups with a
cyclic subgroup amalgamated 1s automatic.

As we have already noted, finitely generated free groups are also negatively
curved and so we have the following corollary to Theorem D.

Corollary 1. Let G be an amalgamated product of two finitely generated free groups
X and Y amalgamating a cyclic subgroup Z. Then G is automatic.

Before we give the proof of Theorem D, we will give an independent proof of
Corollary 1, which depends on related work of Gersten and Short [GS1], and which
is of interest in its own right.
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Proof of Corollary 1. We choose free bases for X and Y and denote the images of
a generator of Z in X and Y respectively by a and [ respectively. We can assume,
without any loss of generality, that both a and ( are given by cyclically reduced
words in terms of the bases of X and Y. If either o or 3 is of length 1, then G
is free and there is nothing to prove. Thus we suppose that this is not the case.
Let J and K be l-dimensional complexes with a single vertex and one edge for
each generator of X and Y, respectively. The words a and  can be represented
by immersed loops (i.e. loops without backtracking) in J and K, again denoted «
and 3.

We consder first the case when « and (3 are of equal length & > 2. Subdivide the
circle S! into k segments by inserting k vertices. This induces a subdivision of the
annulus S* x I into k rectangles. We then identify S! x {0} with the loop « in J via
a simplicial map. Similarly we idntify S x {1} with the loop 3 in K. We denote
the resultant complex by K’. Then, by the well known theorem of Seifert and van
Kampen, the fundamental group of K’ is our group G. We now identify the two
vertices of K'. The resultant complex K’ has fundamental group Gx < t >, the free
product of G with an infinite cyclic group < ¢t > on t. Following Gersten and Short
[GS1] we say that a presentation satisfies the C"'(4)-condition if a piece common to
two relators has length at most 1 and every relator has length at least 4. It follows
from the construction of the complex K" that its fundamental group can be defined
by a set of relations corresponding to the rectangles in S! x I. These relations are
all of length 4 and the resultant presentation satisfies not only the C'"'(4)-condition
but also the usual T'(4) condition of small cancellation theory. The main theorem
of Gersten and Short [GS1] states that such groups are automatic. Hence it follows
that GG too is automatic, by Theorem E of II1.6 below, since it is a free factor of an
automatic group.

Suppose next that « is of length p, 3 is of length ¢ and that p # ¢. We then
subdivide every edge in J by inserting ¢ new vertices and identify these new vertices
with the single vertex of J. Similarly we subdivide every edge in K inserting p new
vertices and then again identifying them with the single vertex of K. In each
instance the new complexes have a finitely generated free group as fundamental
group and the groups X and Y are free factors of the appropriate fundamental
group. Moreover the loops corresponding to a and  are now of length pg. So the
first step in the proof can be applied here. The net result again is that G is a free
factor of an automatic group and is consequently automatic in this case as well.

We are now almost in a position to begin the proof of Theorem D. We note first
that by the work of Gromov [Gr] an infinite cyclic subgroup Z of a negatively curved
group X is quasigeodesic. Hence by Theorem 1 of II1.3, Z is rational. There are a
number of ways to prove this fact. For instance it can be deduced as a consequence
of the classification of isometries of a Cayley graph of a negatively curved group G
[GH, 8.20] . Each isometry ¢ has a limit set L(¢) in the hyperbolic boundary éG
which consists of at most two points. In particular, left translation by an element
z € G is an isometry, which we denote by the same letter z. It is the case that L(z)
is empty if and only if z has finite order [GH,8.28], L(z) consists of two points if
and only if the subgroup (z) is quasigeodesic [GH, 8.21], and the “parabolic” case
of precisely one point cannot occur [GH, 8.29].

An alternative proof can be obtained by using (1) implies (2) from Theorem 1 of

II1.3 and [GS3]. It follows from [GS3 4.4] and the fact that hyperbolic groups are
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biautomatic that an infinite cyclic subgroup (z) is a a subgroup of finite index in a
direct factor of C'(Cg(z)), the centre of the centralizer of z in G. Abelian subgroups
of a hyperbolic group are finite extensions of a cyclic group ([Gr], [GS3,5.1]). But
this means that (z) is a quasiconvex subgroup with respect to the language of
geodesics.

It follows immediately then from Theorem C that if Y is a second negatively
curved group containing Z, then the amalgamated product G = X xz Y is asyn-
chronously automatic. Our objective is to prove that G is automatic. It suffices to
prove that condition (3) holds, since this is the additional assumption of Theorem
C that ensures an automatic structure for G.

Now Gromov’s theorem that a cyclic subgroup of a negatively curved group is
quasigeodesic implies that given a generator z and a finite generating set A for X,
there are constants A and e such that for all n, [2™| > An —e. We will show slightly
more. We will show that there are constants 7 = 7x(Z) and € so that for all n,
ntT — € < |27y < n7t + e This 7 is none other than the translation length of Z (see
below).

To this end, let us suppose henceforth that X Y are negatively curved groups
and that Z is an infinite cyclic subgroup of both X and Y. Let A" be a finite set
of group generators of X which we assume contains an element {z} such that z
generates Z. Put D = X U X~ Then (D, L(X)) is an automatic structure for X,
where L(X) is the set of all geodesic words over D. We have already noted that if
Z 1s an infinite cyclic subgroup of X, then Z is rational. So there is a regular set
L(Z) C L(X) which contains a representative for each element of Z. Now, following
Gromov [Gr] (see also [GS3]) we define the translation length of an element g € X
with respect to the generating set X' to be

1 |9"|X
Tx(g) = lim ——.
n—o0o n
This limit exists as the sequence |¢"|x is subadditive ([Ma]).

As Z is a rational subgroup of X, it follows from the Pumping Lemma, I1.A.4,
that there is a word w = uyv in L(Z) such that uy'v € L(Z) for all i > 0.

Since the geodesics uy'v are all of different lengths, they must represent distinct
elements of Z. In particular uyv # uy?v. Consequently

volyy = ™

for some non-zero integer m. We consider first the case where m > 0. The other
—1

yv = 1 (m > 0), can be handled similarly.
Notice now that

case, v

U_lij = Zm]
for every positive integer j. Moreover y™/ is a geodesic since it is a subword of a
geodesic. It follows that |v=1yiv|y > jl(y) — 2{(v). Therefore

Jly) = 20(v) < [277] < jl(y) +2L(v).
Now if n is any positive integer, then n = mj + r where 0 < r < m. We then have
mjl(y) = 26(y) — [z7] < [z < myl(y) + 20(y) + [=7].

Since r is bounded, so is [z7|. In particular,

_ R .
Tx(Z) = lim —— = lim e )
n—oo 1 m—oo M) m

Notice that Tx(Z) is always rational.
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Lemma 4. Let X be negatively curved, and let Z be an infinite cyclic subgroup of
X, generated by z € X. Let X be a finite set of group generators of X. For any
positive integer d, there is a set of group generators X' of X such that

Tx(z) = dry(z).

Proof. Let X' be the union of X together with a set in a one-to-one correspondence
with the elements of X of length at most d. Then X’ is a second set of group
generators of X, where the generation map is defined in the obvious way. Notice

that if f € X is of X-length at least d, then
dlflar < [flx < d|flar + 1.
So if m > 0 is given and j > 0 is chosen sufficiently large, then
dZ™ | < 2™ |y < d|lZ™ |4 + 1.
Dividing by my and letting j go to infinity, we find that
dry(Z) = Tx(Z)

as required.

Lemma 5. Let X,Y be negatively curved curved groups, and let Z,Z; be infinite
cyclic subgroups of X and'Y respectively. Let X be a finite set of group generators
of X containing a generator z of Z and let Y be a finite set of group generators of Y
containing a generator z1 of Z1. Then we can choose finite sets of group generators

X" and Y of X and Y respectively such that
r10(2) = 7y (1),

Proof. Now tx(Z) = r/s and 7y(Z1) = r1/s1 are positive rational numbers. It
follows from Lemma 3 that by choosing a new set X’ of generators of X and a new
set )’ of generators of Y we can arrange that

. 1x(®)
TX/(Z) - s

and =)
. Ty(Z

Ty(Z1) = 7“181

This completes the proof of Lemma 5.
Next we prove

Lemma 6. Let G be the amalgamated product of two negatively curved groups X
and Y amalgamating a cyclic subgroup Z. Suppose that X and ) are finite sets of
group generators of X and Y respectively and that both X and Y contain a letter
z such that Z generates Z. Suppose also that Tx(Z) = Ty(Z). Let L(X) be the set
of all geodesic words over X U X ™! and let L(Y) be the set of all geodesic words
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over Y U Y~!. Then there exists a positive constant k such that if v € L(X) and
w € L(Y) are such that

v=w=2"
for some n, then v and w are k-fellow travellers in the Cayley graph I'(G).

Proof. Suppose for the moment that n > 0 is a large integer and that v and w are
the geodesic words given above. Now by the work of Gromov [Gr] we can find a
constant K such that every geodesic in the Cayley graph I'y(X) of X which ends
up at some power z" of Z stays within distance K of the path z™ and similarly for
geodesics in the Cayley graph I'y(Y') of Y. Notice that K is independent of n. So
there exist functions f(¢) and ¢(¢) from [0, 00) to {0,...,n} such that

dy(v(t),z/V) < K

and

dy(w(t), 70) < K
and

IZ|lx —nmx(Z)| < K
and

IZly =nmy(Z)| < K

hold for all n > 0. Now since 7x(Z) = 7y(Z) = 7 , we have for all n > 0
12" x = [7"[y] < 2K

and so
vertf(t)r — g(t)r| < 4K.

It now follows that (using I' to denote I' yy(G))

dr(v(t),w(t)) < 2K + dp(z/®,z90)
<K + M

where
M = max{|Z|xruy | 0 < p <4K/7}.

Thus if we set k = 2K 4+ M, the conclusion of Lemma 6 holds for positive n. The
case n < 0 can be handled analogously, and so the proof of Lemma 6 is complete.

It follows, on appealing to Lemma 5 and Lemma 6 as needed, that condition (3)
of Theorem A holds. This completes the proof of Theorem D.

These arguments can be made more general. In fact, with a little bit of work
they can be made to show the following: If X and Y are negatively curved groups
each containing the rational subgroup Z, and there are generating sets X and Y
and a constant e such that for any element g of Z, ||g|x — |¢|y| < €, then condition
(3) of Theorem A holds. In particular G = X xz Y is automatic. We leave the task
of checking this to the reader.
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6. Free factors and retracts.

Suppose that G is a group and that A" is a finite set of group generators for G.
Let A = YUX ™! and adopt the usual notation with p : A* — G mapping w to w.
If ¢ is a homomorphism of G onto a group H, then ¢ o restricted to X" is a group
generation map for H. The homomorphism ¢ induces a graph homomorphism, also

denoted by ¢, of I'y(G) onto I'y(H). This implies that

da(91,92) 2 du(o(g1), ¢(g2)),

where dg and dy denote distances in the respective Cayley graphs. We shall make
use of this remark shortly.
Our first objective is to prove the following theorem.

Theorem F. If H is a free factor of an automatic (asynchronously automatic)
group, then H is automatic (asynchronously automatic).

Notice that such a free factor H is a retract of G, i.e. there is a homomorphism
¢ of G onto H which is the indentity on H.
In order to prove the theorem we begin by proving the following lemma.

Lemma 1. Suppose that H is a retract of G and that (A,L) is an automatic
structure (asynchronously automatic structure) for G. If H is L-rational, i.e. if

LH)={w|weL andwe H}

is reqular, then there is an automatic structure (asynchronously automatic struc-

ture) (A, L'(H)) for H, with L'(H) C L(H).

Proof. Notice first that by Proposition 1 of section II.B.1 (see section II.B.7 for the
asynchronous case) there is an automatic structure (A, L') for G with L’ C L, and
which contains only a finite number of representatives for each element of G. Now
H is also L'-rational in G as L(H) N L' = L'(H) is a regular language.

We consider first the synchronous case. Let ¢ : G — H be a retraction from
G to H. It suffices to prove that that L'(H) has the k-fellow traveller property
for some k. To this end, suppose that u,v € L'(H) and that dy(w,v) < 1. Put
A=H{a1,...,a,} and ag = e. Then

Hence
u = v(a;).
Now ¢(@;) can be expressed as a word in the @;:
¢(ai) = wiar, ..., ag).
Hence
u = vw;i(ar,...,ay).

So if ¢ is the maximum of the lengths of all of these w;(ay,...,a;), 1t = 0,...,q,
then there exists a k such that u, v are k-fellow travellers in I'y(G) and hence also

in Dy (H).
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The proof that (A, L'(H)) is an asynchronously automatic structure for H if
(A, L") is an asynchronously automatic structure for G with a finite number of
representatives for each element can be carried out in much the same way, using
instead the sharper version of Theorem 1 of II.B.7 described in the preamble to
the proof of that theorem. Here we need only observe that if u and v and v and w
are two pairs of asynchronous k-fellow travellers, then v and w are asynchronous
2k-fellow travellers. Again we have to re-express each ¢(@;) as w;(ay,...,ay) and
notice that L'(H) has the k(-fellow traveller property.

We are now in a position to complete the proof of Theorem F. To this end let
G =HxF, and
A= {hlv"'vhmvflv"'vfn}v

where hy,...,hy and fi1,..., f,, are finite sets of monoid generators for H and F
respectively. Let (A, L) be an automatic (synchronously automatic) structure for
GG and suppose that every element of G has only finitely many representatives in
L, and that the empty word e is a representative of the identity element. We now
apply Lemma 3 of II.B.7 with ~ = 0. Let z,...,%, be the set of “trivial infixes
7guaranteed to be finite by Lemma 3 of I1.B.7, i.e. the finitely many words z such
that uzw € L for some choice of u,w and Z = 1. We now put

L(H) :Lﬂ{hl,...,hm,zl,...,zp}*.
Then L(H) is regular. We claim that
(1) LH)={wel|weH}.

Let R denote the right-hand-side of (1). Then clearly L(H) C R. We have to prove
the reverse inequality. Suppose that w € R. Then w can be factored into one of
the two forms

W = ULV ... UV, W = V13U ... VU

where u; € {h1,...,hm,21,..., 2} and v; € {f1,..., fn,21,...,2p}* and t is cho-
sen to be minimal. Notice that we allow ¢t = 0 in which case w = e. We now show
that t = 1. As w € H, there is a word wy € {hy,...,h,}* such that wy = w~!. If
w has the first of the two forms possible, let w’ be the word obtained by replacing
up by wiuy = u}. Then w'’ = 1; ifa = 1, then consider the word w' = vjusy ... vy.

Thus by the definition of free products, some u; = 1 or some v; = 1. But this
contradicts the minimality of expression of the word w in terms of u; and v;. Thus
w = Uq.

The second case, i.e. when w = vyuy ...vius follows similarly, this time post-
multiplying by wy.

This completes the proof of Theorem F.

Next we prove the

Theorem G. Let G be a finitely presented group and let the subgroup H of G be a
retract of G. If G satisfies a linear or a quadratic or an exponential i1soperimetric
inequality, then H satisfies correspondingly a linear or a quadratic or an exponential
1soperimetric inequality.
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Proof. We shall establish during the course of the argument that H is also finitely
presented (a result due to Wall).

Let {x1,...,2,»} be finite set of generators for G, and let r : G — H be a
retraction. If m is the number of distinct images r(x;), we can consider {y1,...,ym}
as a set of generators for H, using the natural map p(y;) = r(z;) for some ¢ (as r
is onto). Now consider a finite presentation

P={t1y ey TmsYlseeerYn | T1yeeyTh)

for G. For w € F(y1,...,yn) and @w = 1 in H, then w = 1 in G too. Hence there
are words p; € F(21,...,&m,Y1,-..,Yn) = F such that w = Hf\;lpislipi_l in F,
where s; € {ry,...,rr}. The map r restricted to the set of generators induces a
map p: F — F(y1,...,Yn). But then

plw) =w = H p(pi)p(si)®p(pi)-

It follows that
,P/ = <y17' -y Yn | p(r1)7' .. 7p(rk)>

is a finite presentation for the group H, and it is clear that the Dehn function for
the presentation P of G is a Dehn function for the presentation P’ of H.

In particular, then, a retract of a negatively curved group is also negatively
curved and therefore, in particular, a free factor of a negatively curved group is
also negatively curved.

In fact it is possible to generalise Theorem G a little in the case of negatively
curved groups and automatic groups.

Theorem H. Suppose that G = X xz Y where Z 1s finite. Then G s negatively
curved (automatic) if and only if both X and Y are negatively curved (automatic).

The proof of Theorem H follows much the same lines as that of Theorem G. We
start out by observing that because Z is finite, GG is finitely presented if and only
if both X and Y are finitely presented (Karrass and Solitar [IKS]).

Now suppose that X and Y satisfy a linear isoperimetric inequality. We sketch
the proof that G also satisfies a linear isoperimetric inequality. Suppose that
Z =A{#,...,2,} and that & = {uq,...,up}, V = {v1,...,v,} are sets in one-one
correspondence with Z. We choose finite presentations

X=<X;R> Y =<Y;5>

for X and Y respectively so that X 2 U, Y O V and the respective group generating
maps send u; to z; and v; to z;. Let F be the free group on W = AU Y. The group
generating maps for X' and Y extend to a group generating map of W into GG. This
gives rise to a homomorphism ¢ of F' onto G with kernel K, say. Since

G=<W;RUSU{upw;'|i=1,...,p} >,
K is the normal closure in F' of

Q=RUSU{uw; ' |i=1,....p}
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We have to prove that if w € K is of length n, then w can be expressed as a
product of cn conjugates of the elements of Q and their inverses, where ¢ is a
constant independent of w. Now w breaks up into a product of subwords over X
and ). At least one of these subwords, say the X'-word w’, must have a value in Z,
i.e. w’ =; for some i. So the relator w'u; ' can be expressed as a product of ¢;j
conjugates of elements of R and their inverses, where j is the length of w’ and ¢
is the constant guaranteed by the fact that the given presentation for X satisfies a
linear isoperimetric inequality. So the subword w’ of w can be replaced by v; as a
consequence of ¢1j + 1 relations. The resulting word w, say, is now expressed as
a product of fewer X' and ) subwords and so the process can be continued by an
induction, thereby completing the proof. In fact we have proved somewhat more,
namely that a free product of two groups amalgamating a finite subgroup satisfies
the maximum of the isoperimetric inequalities satisfied by the factors.

Now suppose that the group G is negatively curved. As we remarked at the
outset both X and Y are then finitely presented since G is finitely presented. We
choose a group generating set W as detailed above. Our objective now is to sketch
the proof that every geodesic triangle T in the Cayley graph I' x(X) of X is § —thin
for some 6. The three vertices of T define a geodesic triangle T” in the Cayley graph
T'w(G) of G, which is therefore §—thin for some §. The word w labelling a side
of T' represents an element of X. Since X' contains a "representative” u; for each
element of Z one can show that w can be replaced by a second geodesic word in
I'w(G) with the same extremities as w with letters coming only from A. This
gives rise to a second geodesic triangle 7" in ')y (G) with the same vertices as T,
whose sides are labelled by words over X'. This implies that T is actually a geodesic
triangle in 'y (G) and consequently §—thin in I'w(G) and therefore, by a similar
argument, also d—thin in I'y(X). This completes the proof.

Suppose now that G is the amalgamated product in the statement of the theorem
and that (X, L(X)) and (Y, L(Y)) are automatic structures with uniqueness for
the automatic groups X and Y respectively. We assume that the sets ¢ and V
(above) are contained in X' and ) respectively, and that they are respectively the
representatives in L(X ) and L(Y) mapping onto Z. Let W = XU Y. Our objective
is to concoct an automatic structure over W for G. Let

L' ={w|we L(X) and for all w € Y
if v € L(X)and

v = wu, then w < v},

where here < is the lexicographic ordering introduced in II.A.5. It follows from
the same argument used to prove Proposition 1 of II.B.1 that L’ is regular. It

follows then that L(X/Z) = L' — U is also regular. The corresponding set L(Y/Z)

contained in L(Y') is then also regular. Consequently
L' = (L(Y/Z) U {e})(L(X/Z)L(Y/Z))*(L(X/Z) U {¢})
is also regular and therefore so too is
L=TLU.

It follows that (W, L) is a rational structure with uniqueness for G. In fact we
claim that (W, L) is an automatic structure for G.
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Now L= = A(L) and so it is regular. We are left with checking that the sets L,,
are regular for each w € W. Suppose first that w = = € X'. Then for each u; there
is a word w; ; € L(X) such that

U T = wiwui(l,),
where here «(x) € {1,...,p}. Now if v is any word over X, then
L(X), = {v(wy,wy) | wy,ws € L(X),w; = w30},

is regular, by Lemma 1 of IL.B.1. It follows that L, is the union of the finitely many
regular sets

A(L)NL(X)2) N (L(X/Z) x LX) Z))(ti(z), i)

with ¢ ranging over the integers from 1 to p. So L, is regular. A similar argument
applies to the other case where w € ). So this completes the proof that G is
automatic.

Finally, let us assume that the group G is automatic. Let W be the set of monoid
generators for G chosen above. Now there is an automatic structure (W, L) with
uniqueness for G. Now by Lemma 3 of II.B. 7 the uniqueness of representation
for the elements of G implies that there are at most a finite number of subwords z
with 2zy € L and Z7 € Z. Let § = {z1,..., 2.} be the set of all such subwords z.
Consequently

LX)={w|weLandwe X} =LNXUS)"

is regular and contains a unique representative for each element of X. We supple-
ment X by the disjoint set {ag,...,a,} and extend the generation map to these
new generators by putting {ag = 1,a7 =z, ...,a, = Z,}. We now replace each oc-
currence of each z; in every word in L(X) by z;z0 ... z0, where the number of zg—s
tacked on is arranged so that all of these words have exactly the same length. Let
L" be the resulting language. Then by a now familiar argument (see, e.g. the proof
of Theorem 1 II.B. 3), the language L is regular. Moreover k is the fellow traveller
constant of the language L of G and if k£’ is the length of the longest element in S,
then kk' is a fellow traveller constant for the language L. So X is automatic, as
claimed.

If we assume only that G is asynchronously automatic, then again it follows in
similar vein that the factors X and Y are asynchronously automatic. We have not
been able to carry out the converse in the case of aysnchronously automatic groups.
The stumbling block for us has been our inability to concoct the counterpart to
L(X/Z) in this case.

Finally we can prove, using Britton’s Lemma (see e.g. [LS]) in place of the
normal form that we have been using in the case of amalgamated products, the
following

Theorem 1. Let G be an HNN extension with a single stable letter with base B.
Suppose that the associated subgroups are finite. Then G s negatively curved (au-
tomatic) if and only if B is negatively curved (automatic).

The proof is similar to the one above and we will not give the details here.
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7. Some examples.

Example 1
Let X be a negatively curved group, Z a quasiconvex subgroup of X for the

language of all geodesics in the Cayley graph of X. Then the double X xz X is
automatic. This is immediate from Theorem C, as words in L(Z) run at the same
rate in both sides of the amalgam.

Example 2
Let X and Z be as above. Then the HNN extension X%y is automatic. Here the

HNN extension is formed using the inclusion homomorphism for both maps Z — X.
In this case X4z = X x7Y where Y = Z x Z. The result now follows from Theorem
A. Here one uses the language Li(Z) for Z obtained by shadowing the language
L(Z) C L(X). The language for Y is the product language L(Z)L1(Z), where L(Z)
is the language of all geodesics in the Cayley graph of Z. Since Li(Z) sits in both
sides of the amalgam and since shadowing runs at the same rate, condition (3)
holds. Condition (4) on the X side of the amalgam follows from III.4.Lemma 5,
and on the Y side follows from L(Y/Z) = L(Z) (a little care is required here since
Y is not negatively curved).

Example 3
It is immediate from I1.10.Corollary E1 that if F' is a finitely generated free

group and if ¢ : F' — F' is an automorphism, then the split extension G = F @
Z is asynchronously automatic. It is an interesting open question whether G is
synchronously automatic. We note in this connection that the authors of [BF]
maintain that if ¢ has no non-trivial periodic conjugacy classes of elements of F,
then G is negatively curved.

Example 4
Contrary to the case of cyclic amalgams, I11.5 above, an example of an amal-

gam of two finitely generated free groups amalgamating a finite index subgroup of
each need not be automatic (although by Theorem E it is always asynchronously
automatic). An example can be found in [Ge, §6]; the proof goes by showing that
the quadratic isoperimetric inequality fails to hold. In this context we mention a
positive result. Suppose that f; : I' — I'; are immersions of finite connected graphs,
i = 1,2 and z is a vertex of I'.[St] We can then form the amalgam

G =mi(T1, f1) Sy 00y m1(D2, f2(2))

where the injections are induced by f;. Then G is synchronously automatic. The
argument is geometric and proceeds along the lines of the proof of Corollary 1 to
Theorem D of III.5 above. One shows that G possesses a C(4)-T(4) presentation
and hence is automatic [GS2].

We now construct some non-automatic groups.

The proofs that the groups that we will construct here do not satisfy certain
isoperimetric inequalities depend on the use of disc diagrams that we have already
alluded to before. With this in mind we begin this section with a discussion of such
diagrams. It is useful here to distinguish a group from its presentations and we will
do so in this section.

Given a presentation P = (X; R) of a group G, there is a naturally associated
2-complex K(P) with one vertex, one 1-cell for each element of X, and one 2-
cell D(r) for relator r € R. The attaching map for the 2-cell D(r) identifies the
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boundary of the cell with a closed curve in the 1-skeleton K(P)(l), based at the
vertex, and representing the word r in the free group F on X. Given a word w € F
such that @ = 1 in G, there is a map of a disc (D,dD) to (K(P), K(P)™M) such
that 0D represents the word w in F(X). After a homotopy, the cell structure of
K(P) induces a cell decomposition of a simply connected complex D, consisting of
disecs joined by arcs. The 1-cells of D can be labelled and oriented by their images
in K. Reading in order the labels on the edges on the boundary of each 2-cell of D
spells out a cyclic conjugate of a word in RUR™!, and reading from an appropriate
vertex and in the right direction, the labels on the boundary of D spell out the
word w. We call D a singular disc diagram for w = 1 in P, and we call the 1-cells
of D edges, and the 2-cells faces. (For more information on disc diagrams see [LS,
chapter V], or [GS1].)

A disc diagram D for w = 1 in G is called minimal if any diagram D’ for w =1
has at least as many regions as D.

Notice that if there is a singular disc diagram for w = 1 in G which has N faces,
then w can be expressed as a product on N conjugates of elements of R. Thus a
Dehn function (see I1.B.5) can be regarded as a function giving an upper bound for
the number of faces in a minimal singular disc diagram for w = 1 in terms of the
length of the word w.

We prove first the

Proposition 1. If Py and Py are finite presentations of the group G, and fi 1s
a Dehn function for Py then there exists a Dehn function fy for Py and constants
K, K' K" such that for every non-negative integer n

fa(n) < K'f1(Kn)+ K'n.

In particular, +f f1 1s a polynomial of degree d > 0, then then there is polynomual
Dehn function of degree d for Py and if f1 is exponential, then fo can also be chosen
exponential.

Proof. Let P; = (X1; Ry) and Py = (X2; R2) be finite presentations for G and let
Fy and F; be respectively free groups on X7 and X,. Let w be a word in F, which
represents the trivial element of G. For each generator x; in X5, there is a word
¢(x;) in Fy representing the same element of G. We show how to obtain a diagram
for w = 1 in Py. First translate the word w into a word ¢(w) in the generators
X1, by using the map x; — ¢(x;). If K is the maximum length of the words ¢(x;),
then the length of ¢(w) is at most K{(w). It follows that there is a diagram Dy for
¢(w) = 1 in Py with at most fi (LK ((w)) faces. On the other hand there is a map
v, the counterpart to ¢, which expresses each generator y; of X; as a word ¥(y;)
in the generators X,. Relabel each edge of the diagram Dy by applying the map
to each label. The labels on the faces are translated into possibly unreduced words
mn F2.

Each of these words represents the trivial element of G, and there are only a
finite number of words which can occur, corresponding to the finitely many relators
in Rl.

So there is a singular disc diagram for each face of Dy, and if the greatest number
of faces occurring in one of these is K’ then we have found a diagram Ds with at
most K'f(K/l(w)) faces for ¢¥(¢p(w)) = 1 in Py. To make a diagram bounded by

the word w, we require some new faces corresponding to x; = ¥ (¢(x;)) for each
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generator x; € Xo. Each of the words ¥(¢(x;))z; "' can be written as a product
of conjugates of relators in Ry. Let K be the maximum number of conjugates
required, i.e. K’ is the maximum number of faces required for a diagram for

Y(p(xi))a7! =1in Py.

It follows therefore from Proposition 1 that if one finite presentation of a group
G satisfies a linear, quadratic, cubic, etc. 1soperimetric inequality then every other
finite presentation satisfies a like isoperimetric inequality. So the existence of such
isoperimetric inequalities for a finitely presented group is independent of the choice
of finite presentations, i.e. is a property of the group itself.

The change of presentation induces quasi-isometry between Cayley graphs. For
more recent results on quasi-isometries and isoperimetric inequalities in a broader
context, see [A].

Finally, suppose that the group G is given by the finite presentation G =<
X;R > . Then if w is a relator in G, it follows from the construction of a disc
diagram for w that if f is a Dehn function for this presentation of G and if F' is

the free group on X, then
w = Hpirlilpi_lv

where r; € R,p; € F and ((p;) < f({(w))K + ((w) (cf. [LS]).
Our first objective here is to prove that the finitely presented group G given by
the finite presentation

Q = (a,b,t,u;tat™ = ab, tbt™! = a,uau" = ab,ubu"' = a)

is not automatic even though it is asynchronously automatic. In fact we shall show
that this presentation does not even satisfy a quadratic isoperimetric inequality.
Gersten [G] has obtained a number of further examples of asynchronously automatic
groups which are not automatic. In particular he has proved that the groups

Grym = (v, y3yz"y ™" =2™)

introduced by Baumslag and Solitar [BS] fail to be automatic when |n| # |m|. In
fact these goups do not even satisfy a quadratic isoperimetric inequality.

We use the ideas described above to show that the presentation Q does not
satisfy a quadratic isoperimetric inequality. First we prove the following lemma.

Lemma 1. K = K(Q) is aspherical.

Proof. The group G is built up from the free group F on a,b by adjoining the
generators t,u which both act on F' by the automorphism a — ab, b — a. The
resulting complex K is thus the union of two mapping tori over the wedge of two
circles (“figure of eight curve”) R, identifying the two copies of R. The inclusion
of R in the space is an injection on m; so by a theorem of J.H.C.Whitehead, K is
aspherical.

Definition A connected 2-complex K is called Cockeroft if the Hurewicz homomor-
phism my(K) — H2(K) is trivial.

Clearly an aspherical 2-complex is Cockcroft.
Definition A disc diagram D is called positive if, for each 2-cell of K, the orientations
on each region of D mapping to this 2-cell induce the same orientation on D.
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Proposition 2. If K is a Cockcroft 2-complex then any positive disc diagram 1s
manimal.

Proof. Let h : D — K be a positive disc diagram, and let ' : D’ — K be some
other disc diagram, for w = 1 in G. Form a map ¢ : h U —h' : S — K by gluing
together the two discs D, D’ along their boundaries. Then ¢ represents a class in
72 (K) which is 0 in Hy(K). But as K is a 2-complex, Hy(K) = Z3(K), the group
of 2-cycles. Letting c(h),c(h’) denote the chains determined by h and A’ in the free
abelian group Cy (K, Z), it follows that ¢(h) = ¢(h'). As h is positive, the coeflicient
of the 2-cell o in Cy(K,Z) is the number of regions in D mapping to o in K. This
means that the number of regions in D’ is at least the number of regions in D.

We now apply this criterion to the 2-complex K(Q) above, and a particular class
of words. Let w, = [u~"t",a] (where [z,y] denotes the commutator zyz~1y~1).
This is a freely reduced word of length 4n+2, and w,, = 1 in G, as can be seen from
the positive disc diagram exhibited below (the case n=3).
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Figure 1: A positive diagram for w3z = 1
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The number of regions f, in such a diagram increases exponentially with n. The
diagram for w,41 is obtained from the diagram for w, by adding 2(a(n) + b(n))
new regions, where a(n),b(n) denote the number of edges labelled a,b in the X-axis
of the diagram. Note that a(n + 1) = a(n) +b(n) and b(n + 1) = a(n), so f, grows
like the Fibonacci numbers, which grow like (1+2\/5 )"

This shows that GG, which is an HNN extension of a free group on two generators

with two stable letters (see [LS]) and hence aysnchronously automatic, does not

satisfy a quadratic isopermetric inequality and is therefore not an automatic group
(cf. the remarks in 1.10).

We give next an example of an amalgamated product G = A xz Y of two auto-
matic groups X and Y with a finitely generated subgroup Z amalgamated which is
not automatic. The amalgamated subgroup Z =< a,b;aba™'b™! > is free abelian
of rank two.

In order to define X and Y, let ¢ and ¢ be the automorphisms of Z represented
respectively by the matrices

1 -1 0 -1
(1 0 ) and (1 0 ) .
These two matrices are of orders 6 and 4 respectively and generate SLy(Z). This

means that every element of SLy(Z) can be expressed as a product of positive
powers of ¢ and . In particular

M= (3 ) =se

is such a product p(¢, ) of positive powers of ¢ and . Now let X and Y be the
split extensions of Z defined respectively by the automorphisms ¢ and :

X =< a,b,x;ab = ba,rax™' = ¢(a) = ab,xbs™" = H(b) =a” " >

Y =< a,b,y;ab = ba,yay™" = p(a) = b,yby™t = (b)) =a' >.

The groups X and Y are fundamental groups of closed orientable three-manifolds,
fibering over a circle, with torus fiber. As the two automorphisms are of finite
order, both X and Y contain a free abelian group of rank three as a subgroup of
finite index. Hence they are both automatic.

Our objective is to prove the

Proposition 3. The amalgamated product G = X *zY is not an automatic group.

Let us put
d=p(z,y).
Thus d acts by conjugation on Z by the matrix M above. Now let us put

wy = [d"ad™ ", al(n =1,2,...).

Then each w, is a relator in G. Now each w,, viewed as an element in the free
group F on a,b,z,y, is of length 4nd 4 4, where § is the length of the word p(z,y)
representing d. We shall prove that a minimal diagram for w,, = 1 has a number of
faces which grows exponentially with n, and therefore G is not an automatic group.
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As there is a bound on the number of edges in each face of a diagram for a finite
presentation, namely 5 here, it suffices to show that in a diagram D, for w, =1
there is an imbedded arc in the 1-skeleton consisting of a number of edges which is
bounded below by a function which grows exponentially with n. We obtain such
an arc as follows.

Now map G to Z by sending a and b to 0 and x and y to 1. Since w,, = 1 in
G, the composite map f,, : D, — K(G) — S! lifts to a map fn:D, — R. In
view of the fact that d is a product of positive powers of x and y, on the boundary
of D,, the function f, achieves its maximum value N, say and its minimum value
0, on two edges labelled o™, along which the function is constant. Call these the
maximimum and minimum edges. The function is monotonic between these four
edges because d is a product of positive powers of x and y. Now notice that at non-
integer values of ¢ in the range of fn. the level sets fn_l (t) are embedded 1-manifolds
because of the form of the relations and they meet the boundary in exactly four
points. The arc components (the closed loops in a level set do not interest us here)
thus fall into two types, according to whether they separate the maximum edges
(Type 1) or not (Type 2).
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Figure 2: The two types of embedded arcs in level sets
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There are three cases to consider, viz.:

(1) all arcs are of type 1;
(2) all arcs are of type 2;
(3) there are arcs of both types.

We consider the three possibilitites in turn.

(1) Here there is an arc A in the 1-skeleton of D, connecting thje two maximum
edges, and the label on this path must be the word d "ad". Since d acts on Z
essentially by M and the entries of the matrices M*™ grow exponentially with n,
the arc A has the required property.

(2) In this case, as in the previous one, there is an arc A in the 1-skeleton of
D,, joining the minimum edges, with label d"ad™" and this arc has the required
property.

(3) In D,, a change occurs between type 1 and type 2 arcs at an integer level i, say.

This can only happen for one value of 7, because of the form of f, on §D,,.
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Figure 3
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If ¢ > N, /2, then there is a level arc in the 1-skeleton of D, joining points on
0D, whose label is
d""ad", where m = [(n —1)/2]

and the number of edges in this arc is an exponential function of n. Similarly if
i < N, /2. This completes the proof of Proposition 2.

This last example suggest two questions which we have not yet been able to
answer.

(1) If X and Y are automatic groups and Z is free abelian of rank two, is XY
asynchronously automatic?

(2) If X and Y are fundamental groups of 3-manifolds with incompressible torus
boundaries and if Z is the peripheral subgroup of X and alsoof V,is X%V
automatic?
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