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Abstract We are concerned with mapping class groups of hyperbolic sur-
faces with nonempty boundary. We present a very natural method, due
to Thurston, of finding many different left orderings of such groups. The
construction uses the action of the mapping class group on the boundary of
the universal cover (viewed in H?), including its limit points on the circle
at infinity. We classify all orderings of braid groups which arise in this way.
Moreover, restricting to a certain class of “nonpathological” orderings, we
prove that there are only finitely many conjugacy classes of such orderings.
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We shall be concerned with surfaces S with nonempty boundary and a finite set
of punctures, and their mapping class groups MCG(S), ie the group of isotopy
classes of homeomorphisms S — S which map 05 identically and permute the
punctures. It was first proved by Dehornoy [5] that braid groups (ie mapping
class groups of punctured disks) are left orderable. A topological proof of this
result was given in [8], and the extension to mapping class groups of general
surfaces with boundary can be found in [20]. Here we present a very natural
method, due to Thurston [22], of finding many different left orderings of such
groups. In brief, one equips the surface with a hyperbolic structure, lifts it to
H?, attaches to this cover its limit points on the circle at infinity, and notices
that there is a natural action of the mapping class group on the (circular)
boundary of the resulting space which fixes a point, and thus an action on R.
We classify the set of orderings of braid groups which arise from Thurston’s
construction; more precisely, we divide these orderings into two disjoint classes,
which we call orderings of finite, respectively infinite, type; the orderings inside
each of the classes are classified by combinatorial means. Finite type orderings
are discrete, and there exist only finitely many conjugacy classes of them. By



contrast, there are uncountably many infinite type orderings, and all of them
are non-discrete.

The outline of the paper is as follows. In the first section we give a short
introduction to orderable groups and survey some known results about them. In
the second section we present Thurston’s construction. In the third section we
define finite and infinite type orderings, and state our classification theorems.
Section four to six are concerned with finite type orderings: in section 4 we
describe a different method of constructing orderings, using “curve diagrams”.
In the section 5 we prove that the set of orderings arising from curve diagrams is
very easy to understand and classify. Moreover, we prove that up to conjugacy
only a finite number of orderings arise in this way. In the sixth section we
prove the classification theorems for finite type orderings. The strategy is to
associate to every point of R with orbit of finite type a curve diagram such that
the orderings arising from this point and from the curve diagram agree. Thus
we obtain, via curve diagram orderings, a good understanding of Thurston type
orderings. In section 7 we prove the results about the infinite type case.

1 Orderable groups

In this section we define orderable groups and survey some known results about
them.

Definition 1.1 A group G is left orderable (respectively right orderable) if
there is a total order < on G which is invariant under left mutiplication
(resp. right multiplication), that is, such that, for all a,b € G, a <b, a =
or b < a, and for all g € G, a < b implies that ga < gb (resp. ag < bg).

A group G is bi-orderable or two—sided orderable if there is a total order on G
which is respected by multiplication on the left and multiplication on the right:
ie. a <b= ga < gb and ag < bg.

Two left orderings < and < on a group G are conjugate if there exists a g € G
such that a < b if and only if ag < bg. So two left orderings are conjugate if
“one is obtained from the other by right translation in the group”.

Remarks 1.2 (1) The following observation will be extremely important in
what follows. If a group G acts on the left by orientation preserving homeo-
morphisms on R, then every point z in R with free orbit (ie Stab(z) = {1g})
gives rise to a left ordering on G, by defining g > h :<= g(z) > h(z). We



have for every f € G that fg(z) > fh(z) <= g(z) > h(z), since the action
of f preserves the orientation of R; this implies that the ordering is indeed left
invariant. Note that different points in R may give rise to different orderings.
If a point z does not have free orbit, it still gives rise to a partial left invariant
ordering.

(2) In fact, a countable group is left orderable if and only if it has an action by
orientation preserving homeomorphisms on R such that only the trivial group
element acts by the identity-homeomorphism, see for instance [10].

(3) A left orderable group is torsion—free: if an element z had order n, and if
1 < z, then it would follow that 1 <z < 2?<...< 2" ! <2” =1.

(4) The “positive cone” of the ordering, P = {g € G | g > 1} has the properties
that G = PU {1} U P~!, and that PP C P. Conversely, given a subset with
these two properties, a left order < can be defined by a < b :<= a7 'b €
P. Similarly, a right order < is obtained from a < b :<= ab~! € P.
(In particular, a group is left orderable if and only if it is right-orderable.)
The orders are total because of the first property, and transitive because of
the second. The orders are bi-orders if and only if we have in addition that
g 'PgC Pforall ged.

(5) The following classes of groups are bi-orderable: (a) finitely generated
torsion—free abelian groups; (b) finitely generated free groups (this is a result of
Magnus, see eg [12]); (c) more generally, residually free groups, like fundamental
groups of closed surfaces (this is due to Baumslag, see [21, p.484]).

(6) The standard reference for orderings on groups is Rhemtulla and Mura’s

book [17].

We now give four examples of attractive results about orders on groups.

(1) Neville Smythe [21] used the orderability of surface groups to prove that
any null-homotopic curve on a surface S is the image under projection of an
embedded unknotted loop in S x I.

(2) As pointed out by N. Smythe [14] in response to a question of L. Neuwirth
[13, Question N], knot groups are in general not bi—orderable. For instance the
trefoil knot group (which is isomorphic to the braid group on three strings Bs),
is not bi-orderable. To show this, consider the presentation Bs = (z,y;2% =
y®). In this group one has zy # yx. Suppose that Bj is bi—orderable and that
yz > zy. Conjugating this inequality by z yields

1 1 4, -1 2,.—1

zy=z(yz)e™ > z(ey)e™! = 2ty = yta! = yataT! = g2,



so we have the contradiction that zy > yx.

Neuwirth reformulated the question as ‘Are knot groups left orderable?’. A
positive answer to this question follows from an observation by J. Howie and
H. Short [11] that knot groups are locally indicable (every non-trivial finitely
generated subgroup has Z as a homomorphic image), together with a theorem
of Burns and Hale [3] that locally indicable groups are left orderable. The
converse of Burns and Hale’s theorem is known to be false - see [1] and [8,
Theorem 5.3].

(3) We have just seen that Bs (and hence all braid groups) is not bi-orderable.
Rolfsen and Kim [12] have recently proved that pure braid groups PB,, are
bi—orderable. However, no bi—ordering of PB,, extends to a left ordering of B,

[18].

(4) A conjecture of Kaplansky, called the Zero Divisor Conjecture, asserts that
if R is a ring without zero divisors and G is a torsion—free group then the group
ring RG has no zero divisors. The hypothesis that G be torsion free is necessary,
for if G contains an element z of order n then (1—z)(1+z+...+2"" 1) =01in
RG. The conjecture is known to hold for left orderable groups. In fact, is not
hard to see that left orderable groups have the “two unique product” property
which implies that the conjecture holds for them (see eg [16], and also Delzant
[6] and Bowditch [2] for some recent remarks about this property.)

2 Orderings of mapping class groups using hyper-
bolic geometry

In this section we present the definition of orders on mapping class groups of
surfaces which we learned from W Thurston, and prove that they all extend the
subword-ordering of Elrifai- Morton. The idea comes from the following classical
situation. As is well known, every closed surface of genus g > 2 can carry a
hyperbolic structure; ie there is a homeomorphism between the universal cover
S~ of S and the hyperbolic plane H? such that the covering transformations
are isometries of H2. There is a natural closure S~ = W of S~ = H? | defined
by adding the so-called circle at infinity S = OT. Points of this circle can
be defined as classes of geodesics, or quasi-geodesics, v : [0,00) — H?, staying
a bounded distance apart. The covering action of 71(S5) on S™ extends to an
action on S¥. So in particular, we have an action of 71(S) on the circle at
infinity by homeomorphisms; this action has been much studied (for a good
modern exposition of this see [9]). Even stronger, every homeomorphism of the



surface lifts and extends to a homeomorphism of S¥; however, there is a 7 (5)-
family of possible choices of lift, and therefore we get no well-defined action of

MCG(S) on SL .

Instead of closed surfaces, Thurston considers surfaces S with nonempty bound-
ary, a finite number of punctures, and y(S) < 0. Again, one can obtain a hy-
perbolic structure on S in which 05 is a geodesic and the punctures are cusps;
this time, S™ is identified with a proper subset of H?. The boundary of this
subset is just the union of the lifts of 0.5 in particular it is a union of geodesics
in H?, and it follows that S~ is convex in the hyperbolic metric. Moreover, the
set of limit points of S™ on the circle at infinity OH’ is a Cantor set in OH .
The closure S™ of S™ in ﬁQ, ie S~ with its limit points on the circle at infinity
attached, is homeomorphic to a closed disk; 957~ is a circle, also containing
S~ M JH as a Cantor set.

We now fix, once and for all, a basepoint of S™ anywhere on 05~. We denote
the component of 95~ which contains the base point by II (see Figure 1). The
basepoint projects to a basepoint of S in 95, and II is an infinite cyclic cover
of one component of 35. We consider the set of geodesics in S™ starting at
the basepoint - they are parametrized by the interval (0, 7), according to their
angle with II. We shall denote by 7, the geodesic with angle o € (0,7) and by
~q its projection to S. Since S™ is hyperbolically convex, each point of 957
can be connected to the basepoint by a unique geodesic (possibly of infinite
length) in S7™, and for points in ST\II this is one of the geodesics 7, with
a € (0,7). This construction proves

Lemma 2.1 There is a natural homeomorphism between 0ST\Il and (0, 7).
O

As in the case of closed surfaces, we have an action of 71(S5) on S7, which
restricts to an action on 9S~. However, this time we have more:

Proposition 2.2 There is a natural action by orientation preserving homeo-

morphisms of MCG(S) on dST\Il = (0, 7).

Proof Every homeomorphism ¢: S — S has a canonical lift @: S~ — S,
namely the one that fixes the basepoint of S, and thus all of II. Moreover,
Z has an extension @: S — S~. The restriction of this homeomorphism to
0S7 is invariant under isotopy of ¢, and fixes II, and thus yields a well-defined
homeomorphism of dS™\II. O

Corollary 2.3 MCG(S) is left orderable.



circle at S
infinity OH

Figure 1: picture of S~ in H? (here S is a twice-punctured disk)



Proof No nontrivial element of MCG(S) acts trivially on (0,7), because if
such an element existed, it would in particular fix all liftings of the basepoint
of S, and thus induce the identity-homorphism on 7(5), contradicting the
hypothesis that the element be non-isotopic to the identity. The result now
follows from Remark 1.2(2), because (0, 7) is homeomorphic to R.

However, there is an elementary proof in our situation. We choose arbitrarily
a finite generating set of m(S5), and denote the end points of the liftings of
these elements by sq,...,5; € (0,7). A left order on MCG(S) is now defined
inductively: if ¢(s1) > s; then ¢ > 1 (and the same with > replaced by <);
if ¢(s1) = s1, but @(sz) > sy, then ¢ > 1 as well, and so on; this is a total
order, because we have that (s;) = s; for all 4 if and only if ¢ = 1. O

However, for the rest of the paper we shall be less interested in orderings of
this type, but rather in orderings induced by the orbits of single geodesics, ie
in orderings of the type introduced in Remark 1.2(1).

Proposition 2.4 For any simple closed geodesic T in the surface S we have
for the positive Dehn-twist T along T that T'(«) > o« for any a € (0, 7). If v,
intersects T at least once, then the inequality is strict.

Proof If 7, is disjoint from 7, then T'(a) = a. If, on the contrary, v,
intersects 7, and hence any curve isotopic to 7, any number of times (possibly
infinitely often), then we denote by 7;(v,) (i € N) the curve obtained from 7,
by applying the Dehn twist to the first ¢ intersections of v, with 7 and ignoring
all following intersections; we denote by 7T;(«) its end point in dDZ\II. We
have T'(a) = lim; 00 Ti(@).

We now claim that (7(a));en is a strictly increasing sequence. To simplify
notation, we shall prove the special case Ti(a) > «, the proof in the general
case is exactly the same. In the universal cover D7 we consider the lifting of
the curve T3 (7,): starting at the basepoint, it sets off along 7,, up to the first
intersection with some lifting 7 of 7. There it turns right, walks along 7 up
to the next preimage of the intersection point, where it encounters a different
lifting 7/, of v,. There it turns left, following this lifting all the way to d D \II.
The crucial point now is that 7, and 7/, intersect T at the same angle, because
the two intersections are just different liftings of the same intersection between
Yo and 7 in D,,. It follows that 7, and 7/, do not intersect, not even at infinity,
for if they did they would determine a hyperbolic triangle in DY two of whose
interior angles already add up to 180 degree, which is impossible. This implies
the claim, and thus proves the proposition. O



Corollary 2.5 All total orderings of the braid group B, considered in this
paper extend the subword-ordering of Elrifai-Morton [7, 23]. More precisely,
if a curve 7 in D,, encloses a precisely twice punctured disk and TY? is the
half~-Dehn-twist along T interchanging the two punctures then T o ¢ > ¢ for
any ¢ € B, and any ordering > of Thurston-type.

Proof It suffices to prove that T'/%(a) > a for all @ € (0,7). If there
existed an @ € (0,7) with T%/%(a) < a then it would follow that 7'(e) =
T2 o TV?(a) < TY?(a) < o (where the first inequality holds since T/2 is
orientation preserving), in contradiction with the proposition. O

3 Main results

We shall mainly be interested in the case S = D, (n > 2), where D,, is the
closed unit disk in C, with n punctures lined up in the real interval (—1,1);in
this case the mapping class group is a braid group: MCG(D,,) = B,,. We recall
that for a € (0, 7) we denote by =, the geodesic which starts at the basepoint
with angle o with dD,,, and by 7, its preimage in the universal cover starting
at the basepoint of D;’.

Definition 3.1 A geodesic v,, o € (0,7), is said to be of finite type if it
satisfies at least one of the following conditions

(a) there exists a finite initial segment !, such that any two punctures that lie
in the same path component of S\’ also lie in the same path component of

S\Va, or
(b) it falls into a puncture, or
(c) it spirals towards a simple closed geodesic.

If a geodesic 7, is not of finite type then we say it is of infinile type. We also
define the ordering of B, induced by a geodesic 7, to be of finite or infinite
type if v, is of finite or infinite type.

An infinite type geodesic looks as follows. All its self intersections occur in some
finite initial segment v/ . At least one of the path components of S\~ contains
three or more punctures in its interior, and the closure of v,\7/, is a geodesic
lamination without closed leaves inside such a component. In particular, there
is a pair of punctures which are seperated by the whole geodesic, but not by any
finite initial segment. (Note that the geodesic v,\7 is isolated from both sides



— in this it is very different from leaves of geodesic laminations on surfaces
without boundary.)

Definition 3.2 For a geodesic v, of finite respectively infinite type we say
that it fills the surface in finite respectively infinite time if all punctures lie in
different path components of S\7,. By contrast, a geodesic v, does not fill the
surface if S\, has a path component that contains two punctures.

The aim of the rest of the paper is to prove the following theorems. Recall that
every point « € (0, 7) gives rise to a - possibly partial - ordering of MCG(S).
The first theorem gives criteria for these orderings to be total or, equivalently,
for the orbit of «a to be free.

Theorem 3.3 Let S be any hyperbolic surface.
(a) If a geodesic v, does not fill S, then the orbit of a € (0, 7) is not free.

(b) If 7, is of finite type, then the converse holds as well: if v, fills the surface,
then « has free orbit.

(c) The set of points o € (0,m) such that v, is of infinite type consists of
uncountably many, discrete, nonisolated points. All but countably many of
those that fill S in infinite time have free orbit.

The next theorem gives a classification of order types that arise from Thurston’s
construction (note that part (a) is not immediately clear: it is conceivable that
finite and infinite type geodesics induce the same orderings).

Theorem 3.4 If' S is a punctured disk, we have:
(a) An ordering cannot be both of finite and infinite type.

(b) Given two geodesics 74,73 of finite type, one can decide whether or not
they determine the same ordering.

(c) Given two geodesics 7,,7vs of infinite type, one can decide whether or not
they determine the same ordering. For instance, if v, and vz are embedded,
then they determine the same ordering if and only if § = A%(a) for some
k € Z (ie if v, and g are related by a slide of the starting point around dD,, ).

(Note that part (a) is not immediately clear: it is conceivable that finite and
infinite type geodesics induce the same orderings.) In fact, we shall develop
machinery which gives a very good and explicit understanding of finite type
orderings:



Theorem 3.5 There is only a finite number of conjugacy classes of orderings
of finite type of MCG(D,,) = B,,. The number N,, of conjugacy classes can be
calculated by the following recursive formula

n—2
n—2
Ny=1 and anln_1+2(z_1)Nkln_k.
k=2

The following list gives the first few values of N, :

6 | 7 | 8 |

n | 2 | 3 | 4
1 1 3 39 | 189 | 1197 |

| 5 |
N_n | | | | 91
Theorems 3.4 and 3.5 almost certainly generalise to mapping class groups of
other negatively curved surfaces, but in order to keep our machinery simple, we
stick to the special case of punctured disks.

4 Orderings of mapping class groups using curve di-
agrams

In this section we present another method for constructing left orderings on B, ,
using certain diagrams on D, , which we call curve diagrams. Both the definition
of curve diagrams and the orderings associated to them are generalisations of
similar concepts in [8].

Convention Whenever we talk about geodesics in D,,, we think of the punc-
tures as being holes in the disk, whose neighbourhoods on the disk have the
geometry of cusps. By contrast, when we talk about curve diagrams, we think
of the punctures as distinguished points on, and belonging to, the disk, and
we ignore the geometric structure. This changing perspective should not cause
confusion.

Definition 4.1 A (partial) curve diagram I' is a diagram on D,, consisting
of 7 < n —1 closed, oriented arcs which are labelled T'y,...,I';. Moreover, the
boundary circle of D, is labelled 'y, and by abuse of notation we shall refer
to it as an “arc” of I'. We require:

(1) every path component of D,\I' has at least one puncture in its interior,

(2) Ufzo int(I';) is embedded and disjoint from the punctures (where int de-
notes the interior),

10



(3) the starting point of the ith arc lies in U}C_:lo Iy, ie on one of the previous
arcs,

(4) the end point of the ith arc lies in one of the previous arcs, or on an earlier
point of the ith arc, or in a puncture.

In the special case that j = n—1, so that in (1) every path component contains
precisely one puncture, we say ' is a total curve diagram.

)

Figure 2: Examples of total curve diagrams on D,. The meaning of the equality signs
will be explained in section 5.

Remarks For simplicity we shall sometimes label arcs 0,...,7, instead of
[o,...,I';. Moreover, we shall use the abbreviated notation I'gy_.u; := U};ZQ I'y.
Note for (1) that the number of path components of D,\I' equals 1 plus the
number of arcs of [' not ending in a puncture, so it can be anything between 1
and n. Note for (3) that the start point of the ith arc can lie in a puncture, if
this puncture was the end point of one of the previous arcs. Finally note that
if + < j then I'; is disjoint from the interior of I';.

We now explain how to associate a partial left ordering of MCG(D,,) = B,, to a
partial curve diagram (with total curve diagrams giving rise to total orderings).
The essential ingredient in this definition is the well-known procedure of “pulling
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tight” or “reducing” two properly embedded curves in a surface. In brief, two
simple closed or properly embedded curves in a surface can be isotoped into a
relative position in which they have minimal possible intersection number, and
this relative position is unique. Moreover, it can be found in a very naive way:
whenever one sees a D-disk (or “bigon”) enclosed by a pair of segments of the
curves, one “squashes” it, ie one reduces the intersection number of the two
curves, by isotoping the arcs across the disk. A systematic exposition of these
ideas can for instance be found in section 2 of [8].

Our definition of the ordering of MCG(S) associated to a curve diagram will
be a variation of the definition in [8]. We briefly remind the reader of this
comparison method. Let I' be a partial curve diagram in which all j arcs are
embedded (no curve I'; has end point in its own interior), and let ¢ and ¥
be two homeomorphisms of D,,. If ¢(I'y) # ¥(I'x), then we will define either
@ < ¥ or ¥ < @, according to the following rule. There is an ¢ < j such that
@(Fou...ui—l) and ¢(FOU...Ui—1) are isotopic, whereas @(FOU...UZ') and Qﬁ(rou...ui)
are not. Then we replace ¢ by an isotopic map, also denoted ¢, such that
the restrictions of ¢ and v to gy, yu;—1 are exactly the same maps. At this
point, ¢(I';) and ¥(I';) have the same starting point and lie in the same path
component of D,\¢(I'ou. ui—1). Next we “pull ¢(I';) tight” with respect to
¥(I';), ie we isotope ¢ so as to minimise the number of intersections of ¢(I')
and ¢ (I;), as described above. This can be done by an isotopy which fixes
¢(lou...ui—1) - Restricting finally our attention to small initial segments of ¢(I)
and ¥(I';), we see that the two curves set off from their common starting point
into the interior of a component of D, \¢(I'gy.. ui—1) in different directions, one
of them “going more to the left”; if it is ¢(I';) say, then we define ¢ > 1,
otherwise ¥ < ¢. The resulting (possibly parital) ordering is left invariant,
because the relative position of yo (') and xo(I') is the same as the one of
(') and ¢ (T) for all x € MCG(S).

We shall use the following variant of this comparison method: first we make
¢(lou..ui—1) and ¥(Fou.. ui—1) agree for maximal possible ¢, as before. If the
arc I'; is embedded, then we proceed as before to compare (I';) and ¥(I;).
If the arc I'; has end point in the interior of I'; itself, then we consider the
embedded arc ') which, by definition, is obtained from I'; by sliding the end
point back along I'; so as to make start and end point coincide, as illustrated
in Figure 3. We then ignore the original arc I';, and compare ¢(I'}) and ¥(I"})
as before.

Definition 4.2 The ordering defined in this way is the ordering associated to
the curve diagram T'.

12



Figure 3: The embedded arc I'} obtained from T'; by sliding the end point

Lemma 4.3 The ordering associated to a curve diagram [ is total if and only
if ' is a total curve diagram.

Proof If I' is total, ie if all components of D,\I' are once-punctured disks,
then any homeomorphism of D, which fixes I' is isotopic to the identity; this
follows from the Alexander trick (see eg [19]). Conversely, if D,\I' has a path
component which contains at least two holes, then we can push the boundary
curve of this path component slightly into its interior, to make it disjoint from
I'. A Dehn twist along such a curve is a nontrivial element of B,,, and acts
trivially on I'. O

Example For any n, the Dehornoy ordering [5] is defined by the diagram con-
sisting of n — 1 horizontal line segments, connecting dD,, to the first (leftmost)
hole, the first to the second hole, and so on. The arcs are oriented from left to
right, and labelled 1,...,n — 1 in this order (see [8]).

Definition 4.4 A (possibly partial) order on a group G is discrete if the pos-
itive cone P = {g € G | ¢ > 1} has a minimal element. (If the ordering is total
then this element is necessarily unique.)

In a group with a discrete total order every element has a unique predecessor
and successor. We note that an ordering is non-discrete if and only if for all
a,c € (G there exists a b € G such that a < b < c.

Lemma 4.5 The total ordering associated to a total curve diagram I is dis-
crete.

Proof The curve diagram ['gy. un—2 (which is obtained from I' by removing
the arc of maximal index) cuts D,, into a number of once-punctured disks and
one twice-punctured disk. We observe that the unique smallest element is the
positive half-twist interchanging the two punctures inside this disk. O

13



Remark [t is an easy exercise to prove that the partial orderings associated to
partial curve diagrams are in general not discrete. However, we shall see in the
proof of Theorem 3.4(a) that even such orderings have a certain discreteness

property.

5 Which pairs of curve diagrams determine the same
ordering?

In this section we define an equivalence relation of curve diagrams which we
call loose isoltopy. We give a simple algorithm to decide whether or not two
given curve diagrams are loosely isotopic. We prove that two curve diagrams
determine the same ordering if and only if they are loosely isotopic. Moreover,
the quotient of the set of loose isotopy classes of curve diagrams under the
natural action of B, is finite; we deduce that for fixed n > 2 there is only a
finite number of conjugacy classes of orderings arising from curve diagrams.

Definition 5.1 Let C denote the space of all curve diagrams, equipped with
the natural topology (the subset topology from the space of all mappings of
n — 1 arcs into D,, ). We define loose isotopy to be the equivalence relation on
C generated by the following two types of equivalence:

(1) Continuous deformation: two curve diagrams are equivalent if they lie in
the same path component of C.

(2) Pulling loops around punctures tight: if some final segment of the curve I';
say cuts out a disk with one puncture from D, , then this final segment can be
pulled tight, so as to make I'; end in the puncture.

Figure 4: Pulling loops around punctures tight

Equivalence (2) is illustrated in figure 4; here the dashed lines indicate any
number of arcs of index greater than ¢ which start on I';. Equivalence (1) says
that one is allowed to deform the diagram, to slide starting points of arcs along
the union of all previous arcs, including their start and end points, and even
across punctures, if they are the end points of some previous arcs. Similarly,

14



end points of arcs are allowed to slide across the union of all “previous points
of the diagram”.

In order to get a feel for the meaning of this definition, the reader may want to
prove that the equality signs in Figure 2 represent loose isotopies.

Theorem 5.2 (a) T'wo curve diagrams determine the same ordering of B,, if
and only if they are loosely isotopic.

(b) There is an algorithm to decide whether or not two curve diagrams ' and
A are loosely isotopic.

Proof For the implication “<” of (a) we have to prove that loosely isotopic
diagrams define the same ordering. The only nonobvious claim here is that the
ordering is invariant under the “pulling tight” procedure.

In order to prove this, we consider a curve diagram IV with j arcs, the ith of
which is a loop (ie the end point equals the start point) which encloses exactly
one puncture. We consider in addition the curve diagram I' which is obtained
from I by squashing the curve T to an arc from the starting point of T'; to
the enclosed puncture, much as in Figure 4. Let ¢ and % be two nonisotopic
homeomorphisms, and more precisely assume that ¢ >t ¢. Our aim is to prove
that ¢ > ¥. If @(lou..ui—1) and ¥ (LI'ou..ui—1) are already nonisotopic then
this is obvious since the first ¢ — 1 arcs of ' and T’ coincide. On the other
hand, if ¢(I'ou..ui) and ¥ (I'ou.. i) are isotopic (and the difference between ¢
and % only shows up on arcs of higher index), then after an isotopy the first ¢
arcs of ¢(I'") and ¢ (I') coincide as well, and the result follows easily. Finally
in the critical case, when the first difference occurs on the ith arc of I', we have
the two arcs ¢(I';) and % (I';) which are reduced with respect to each other,
with ¢(I';) setting off more to the left. The crucial observation is now that the
boundary curves of sufficiently small regular neighbourhoods of the two curves
are isotopic to ¢(I'}) respectively ¢ (1) and reduced with respect to each other
- see Figure 5. It is now clear that ¢(I"}) also sets off more to the left than
¥(T%). This completes the proof of implication “<” of (a).

We shall now explicitely describe the algorithm promised in (b), and prove
the implication “=" of (a) along the way. The proof is by induction on n.
For the case n = 2 we note that any two total curve diagrams (with one arc)
are loosely isotopic. Thus there are only two loose isotopy classes of curve
diagrams: the empty diagram and the one with one arc. The empty diagram
induces the trivial ordering, whereas the diagram with one arc induces the

ordering of > o} <= k > [. So the desired algorithm consists just of
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go(ri_j) = ‘LL/)(Fi—l) d}(rl)

Figureb: Proof that ¢ > 1 9 = ¢ >r/ ¢ - the critical case where the first difference
between ¢ and @ occurs on the arc which is being pulled tight

counting the number of arcs, and non loosely isotopic curve diagrams do indeed
induce different orderings.

Now suppose that n > 3, that the result is true for disks with fewer than n
punctures, and that we want to compare two curve diagrams ['g,...,I'; and
Ag, ..., Ay in Dy, with j,j' < n—1. The arc I'; ends either on 9D, or in the
interior of I'y itself, or in a puncture. In the first two cases D, \I'; has precisely
two path components. At most one of them can contain only one puncture; if
one of them does, we pull I'; tight around it. If both components of D,\I'y
contain more than one puncture and if I'y ends on itself, then we slide the
end point of I'y back along I'y, across its starting point, and into I'g = 9D,,.
There are now two possibilities left: either I'y is an embedded arc connecting
the boundary to a puncture (I'; is nonseperating), or it is an embedded arc
connecting two boundary points, cutting D, into two pieces, each of which
has at least two punctures in its interior (I'y is seperating). We repeat this
procedure for A;. There are now four cases:

(1) It may be that I'; is seperating, while A; is not (or vice versa).

(2) It is possible that I'; and A; are both nonseperating but are not isotopic
with starting points sliding in dD,, (a criterion which is easy to check algorith-
mically).

(3) It is possible that I'; and A; are both seperating but are not isotopic as
oriented arcs, with starting and end points sliding in dD,, (a criterion which is
equally easy to check algorithmically).

Claim In these first three cases the orderings defined by I' and A do not
coincide, and I' and A are not loosely isotopic.

We only need to prove the first part of the claim, the second one follows by the
implication “<” of Theorem 5.2(a). We first treat the following pathological
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situation: if, in case (3) above, I'y and A; are isotopic to each other, but with
opposite orientations, then a homeomorphism of the type indicated in Figure
6 is positive in the ordering defined by I', but negative in the A-ordering. In

Ay

Iy

Figure 6: A homeomorphism which distinguishes the I'- and A-orderings

all other situations allowed by (1), (2), and (3), there exists a simple closed
curve 7 in D, which is disjoint from I'y, but intersects every arc isotopic to
A;. (Consider, for instance, a regular neighbourhood of 9D,,UT'y in D,,. If I'y
is nonseperating then its boundary curve has this property; if 'y is seperating
then at least one of the two boundary curves has.) We denote by 17: D,, — D,
the positive Dehn twist along 7. The map T leaves I'y invariant, while the
arc T(A;) is “more to the left” than A; (to see this, reduce the two arcs by
making them geodesic, and apply Proposition 2.4).

Similarly, there exists a curve 7/ which is disjoint from Ay, but not from any
arc in the isotopy class of I'y. Then 7' sends T(A1) more to the right, but
not very far: 7’7" o T(A;) is still to the left of the arc Ay, which is fixed
by T’_l; and 7! sends I'; to the right, as well. Thus, in summary, the
composition T'' o T sends A; more to the left but ['; more to the right, so
that 77" ' oT € B, is negative in the ordering determined by I', but positive
in the A-ordering. This proves the claim. (One may find simpler proofs, but
this one will be useful in section 7.)

(4) The remaining possibility is that I'; and A; can be made to coincide by
isotopies which need not be fixed on dD,,. Such isotopies can be extended to
loose isotopies of ' or A.

To summarize, we can algorithmically decide whether or not there is a loose
isotopy which makes I'; and A; coincide. If the answer is No (cases (1) - (3)),
then I' and A are not loosely isotopic, and the orderings defined by I' and A do
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not coincide. In this case, the implication “=7" of 5.2(a) is true. If the answer is
Yes (case (4)), then D,\I'y = D,\A; has either one or two path components,
each of which is a disk with at most n — 1 punctures. Moreover, the arcs
I'y,...,I'; form curve diagrams in these disks (with some indices missing in
each curve diagram, if the arcs are distributed among two disks), and similarly
for Ay, ..., Aj. Finally, the following conditions are equivalent:

(i) ' and A are loosely isotopic,

(ii) in each path component of D, \I'y = D, \A; there is a loose isotopy between
the diagrams made up of the remaining arcs of I' respectively A,

(iii) the orderings of Fiz(I'y) C B, induced by I' and A coincide, where
Fiz(I'y) denotes the subgroup whose elements have support disjoint from I'y,

(iv) the orderings of B,, defined by I' and A coincide.

The equivalences between (i) and (ii), and between (iii) and (iv) are clear,
whereas the equivalence of (ii) and (iii) follows from the induction hypothesis.
Also by induction hypothesis, we can decide algorithmically whether or not (ii)
holds. This proves the theorem in case (4). O

We recall that for any ordering “<” of B, , and every element p € B, =
MCG(D,,) one can construct an ordering “<,”, by defining ¢ <, ¢ <=
wp < ¥p, and we call <, “the ordering < conjugated by p”. We observe that
if < is induced by a curve diagram I', then <, is induced by the curve diagram
p(I'). Thus two curve diagrams I' and A induce conjugate orderings if and
only if I' and A are in the same orbit under the natural action of B,, on the
set of loose isotopy classes of curve diagrams.

Proposition 5.3 Let M, denote the number of conjugacy classes of total
orderings of B, arising from curve diagrams. Then M, can be calculated by
the following recursive formula

n—2

M,=1 and Mn:Mn_l—l—Z(Z_Q
k=2

My M, _.
1) k k

Remark In order to avoid confusion, we recall our orientation convention: we
are insisting that “more to the left” means “larger”. It is for this reason that
there is only one ordering of By = Z, not two, as one might expect.

Proof We shall count the orbits of the set of loose isotopy classes of total
curve diagrams under the action of B,,. The case n = 2 is clear, since there is
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only one loose isotopy class of curve diagrams. Now suppose inductively that
the formula is true for up to n — 1 strings.

For every total curve diagram in D, there are two possibilities: (a) the first
arc of the curve diagram ends in a puncture or can be pulled tight so as to end
in a puncture; (b) the first arc cuts D,, into two disks, each of which contains
at least two punctures.

For case (a) we notice that the first arc can be turned into the horizontal arc
from —1 to the leftmost puncture, by an action of some appropriate element
of B,. There are now precisely M,_1 orbits of loose isotopy classes of curve
diagrams of the remaining n —2 arcs in the n — 1-punctured disk D, \ (the first
arc). So case (a) gives a contribution of M,,_; orbits.

The argument for case (b) is similar: the action of an appropriate element of
B,, will turn the first arc of any curve diagram of type (b) into the vertical arc,
oriented from bottom to top, having k£ punctures on its left and n — k on its
right, for some k£ € {2,...,n — 2}. In this case, there should be k — 1 arcs on
the left and n — k — 1 arcs on the right of the first arc, so there are (Zj) ways
to distribute the remaining n — 2 arcs over the two sides. Finally, there are My
respectively M,,_ orbits of loose isotopy classes of total curve diagrams on the

disk on the left respectively on the right. m|

6 Replacing finite type geodesics by curve diagrams

In this section we prove the main theorems on orderings of finite type. The
strategy is to associate to every geodesic of finite type a curve diagram such that
the (possibly partial) orderings arising from the geodesic and the curve diagram
agree. Thus we obtain, via curve diagram orderings, a good understanding of
finite type orderings.

Proof of Theorem 3.3(a) If D,\7, has a path component which contains
at least two holes, then we can push the boundary curve of this path component
slightly into its interior, to make it disjoint from ~,. A Dehn twist along such
a curve will be a nontrivial element of B,,, and act trivially on ~,. O

We now define the curve diagram C(v,) associated to a geodesic vy, of finite
type. It is a subset of 7., more precisely a union of segments of v which
start and end at self-intersection points. The diagram will be disjoint from the
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&

Figure 7: A geodesic and (in bold line) its associated curve diagram

punctures, except that the last arc may fall into a puncture. For simplicity we
shall write I' for C'(y,) and, as before, I'gy. ui—1 for U}C_:lo Iy,

The definition is inductive. We define 'y = dD,,. Now suppose that we have
already found T'g,...,T;_;. So every path component of D,\I'gy. ui—1 is a disk
containing at least one puncture. We put down a pencil at the end point of I';_y,
start tracing out 7,, drawing an arc I'V (with “p” standing for “potential”,
because 'Y is potentially the new arc I';). We continue drawing either up to
the next intersection with I'gy. . ;_1, or up to the first self intersection of Ff, or
until «, falls into a puncture, whichever comes first. We now decide whether
or not Ff has cut one of the components of D,\I'gy. ui—1 in a nontrivial way,
ie whether it has either fallen into a puncture or cut one of the components of
D, \l'gu...ui—1 into two, both of which contain at least one puncture. If yes, we
let T'; := I'Y, and have finished the induction step. If not, we rub out I'¥, and
start a new Ff at the next intersection point of v, with D,\I'gu._ui—1. (This
intersection point is just the end point of the previous I'V, unless this endpoint
is in the interior of the previous I' . Note that in this latter case not only IV,
but the entire segment of the geodesic v, up to its next intersection point with
Lou..ui—1 cuts the disk in a trivial way).

There is one special rule: if in the construction process we obtain an arc I'V
which spirals ad infinitum towards a simple closed geodesic, then we define I';
to be the arc with end point in its own interior containing I'V in a regular
neighbourhood, as shown in figure 8 (this arc is unique up to loose isotopy).
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Figure 8: The curve diagram associated to a geodesic which spirals towards a closed
geodesic

Since at most n — 1 arcs can be constructed in this way, the process terminates
after finitely many steps. We observe that the curve diagram C'(7,) is total
if and only if the geodesic v, fills D,. More generally, two punctures are in
the same path component of D,\v, if and only if they are in the same path
component of D,\C(7,). We also note that for every geodesic v, and ¢ € B,

we have C'(¢(7a)) = ¢(C(7a)) -

Theorem 6.1 For any o € (0,7) and ¢ € B, we have:
(a) if the curve diagrams ¢(C'(7y,)) and C(v,) are isotopic then ¢(a) = o.

(b) if ¢(C'(va)) > C(va) (in the curve diagram sense) then we have p(a) > «
in R.

Corollary 6.2 For every geodesic v, of finite type (a € (0,7)), the ordering
of B,, associated to o by Remark 1.2(1) coincides with the ordering associated
to the curve diagram C'(v,) by Definition 4.2.

Proof of the theorem We shall need a generalisation of the concept of rel-
ative “reduction” of two simple curves in D,, to the case where one of the two
curves is authorised to have self-intersections, but no D-disks with itself. For in-
stance, we shall be interested in the case where one of the two curves is a simple
geodesic, and the other is a homeomorphic image of a non-simple geodesic.

Suppose that C' is a disjoint collection of simple closed geodesics and properly
embedded geodesic arcs connecting distinct punctures in D,,. Then we say that
©(7a) is reducible with respect to C'if there are D-disks enclosed by ¢(7v,) and
C', ie if there are finite segments of ¢(7,) and of C' with the same start and
end points which are homotopic with fixed end points. If ¢(v,) is not reducible
then we say it is reduced with respect to C'. Equivalently, any component of
the preimage of ¢(7,) in the universal cover D’ intersects any component of
the preimage of C' at most once.
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Lemma 6.3 One can pull ¢(v,) tight with respect to C, ie there exists an
isotopy of ¢ which makes ¢(v,) and C reduced with respect to each other.

Proof The proof is an easy exercise — it is in fact similar to the proof of the
“triple reduction lemma” 2.1 of [8]. O

We need some more notation. We still write [' for C(v,), denote by j the
number of arcs of I', and consider the partial curve diagrams gy, ;-1 for ¢ €
{1,...,7}; all their arcs are geodesics. Every path component of D,\I'oy. ui—1
contains at least one puncture in its interior. The boundary curve of each com-
ponent with at least two punctures is isotopic to a unique simple closed geodesic,
which bounds a disk (with these punctures in its interior) in D,,. Removing all
these disks from D,, yields a planar surface with a number of geodesic boundary
components (one of them being dD,,, the others corresponding to the at least
twice punctured components of D, \I'gy..ui—1) and a number of punctures (cor-
responding to once-punctured components of D,\I'gu_ ui—1). We denote this
surface by NTgy.. ui_1; it is a regular neighbourhood of 0D, Ul'gy..ui—1 in Dy,
and contains the complete initial segment of the geodesic v, up to the starting
point of the arc I'; C v4.

We are now ready to prove the theorem. For part (a) suppose that we are given
a € (0,7), and ¢ € B, and that the curve diagrams I' and ¢(I') are isotopic.
Then we can modify the map ¢ by an isotopy which fixes dD,, such that the
restriction ¢|NT' becomes the identity map. But by construction of I' = C'(v,),
the geodesic 7, is entirely contained in NT', and is thus mapped identically.
This proves part (a) of the theorem.

For part (b) suppose that we are given a € (0,7) and ¢ € B,, and that for
some 7 € {1,...,7} the curve diagrams "oy u;—1 and ¢(I'ou..ui—1) are isotopic,
whereas ¢(I';) is “more to the left” than I';. Our aim is to prove that ¢(a) > «,
ie that the end points of the liftings of ¢(vy,) and v, on dDJ\II = (0, 7) are
different, with the one of ¢(v,) being “higher” in Figure 1.

Firstly, the map ¢ sends ['gy. ui—1 to a curve diagram which is isotopic to
Fou...ui—1; therefore we can assume, after an isotopy of ¢ which fixes 90D,
that the restriction @|NToy. ui—1 is the identity map. Note that 7,, be-
ing a geodesic, is already reduced with respect to the collection of geodesics
ONTgu.. ui-1, and therefore p(v,) is also reduced with respect to IN gy ui—1 =

99(3NFOU...UZ'—1)-

Next, we note that the arc I'; will cut precisely one of the components of
D, \NToy. i1 in two, and leave the other components untouched. This critical
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component is an at least twice punctured disk, and we shall denote it by D..
The preimage of D. in the universal cover D’ has many path components, but
we shall be interested in one particular component D7, namely the one which

is cut in two by the segment corresponding to I'; C v, in the geodesic 7, in
Dy

We now distinguish three cases: firstly, the arc I'; falls into a puncture inside
D.; secondly, the arc I'; has its end point in NTqy. ui—1 (either on oy, uio1
or in the initial segment I'; N NTgy_ i1 of I';); thirdly, the end point of the
arc I'; lies in the interior of D. (and then necessarily in the interior of I';).

The first case is the easiest: by an isotopy of ¢ which is fixed outside D. we
can pull o(I';) N D, tight with respect to I'; N D.. The effect of this isotopy
is to make the images of the liftings @(7,) N D. and 7, N D. disjoint, except
for the common starting point. Moreover, both liftings run inside D. all the
way to the circle at infinity. By the hypothesis that ¢(I") > I', we have that an
initial segment of ©(7,) lies to the left of the corresponding segment 7,, and
we conclude that its end point on the circle at infinity also lies more to the left.
This proves the theorem in the first case.

Lemma 6.4 If v is a (finite or infinite) geodesic starting on the boundary
of the punctured disk D., and if ¢ is an automorphism of D. which acts
nontrivially on v, then two liftings of v and ¢(7v) to the universal cover DY
of D. with the same starting point in dDZ have end points either on different
components of 9D (if v is finite) or on different points at infinity (if v is
infinite). O

In the second case, we can pull the arc ¢(I';) N D, tight with respect to I'; N D,
by an isotopy of ¢ as in the first case, thus making their liftings disjoint (except
for the common starting point). We now have by hypothesis that the point of
intersection of @(I'7") with dDZ where @(I'T) exits DT lies to the left of the
one of I'Y’. By the previous lemma, the two points will even lie on different
boundary components of D2, and therefore there is a point of D7 between
these two boundary components which lies on the circle at infinity. For the
liftings of our geodesic and its image this means the following: 7, and (7,)
enter dD7 at the same point, but exit into different components of D\ D7,
with @(74) choosing the one that lies more to the left. Since 7, and ¢(7,) do
not intersect D7 again, they stay inside their chosen component of DY\ D? .
Hence we have for their end points that ¢(a) > «, and the theorem is proved
in the second case.
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We now turn to the third case, which includes the possibility that v, spirals
towards a closed geodesic inside D.. We consider the arc ¥ :=I" as in figure
3, and for simplicity we choose 3. to be a geodesic arc. We denote by D.. C D,
the subdisk cut off by ¥ (so that ¥ = dD,.). Since X is geodesic, we have
that v, N D, is reduced with respect to . After an isotopy of ¢ inside D,
we can assume by lemma 6.3 that the first component of ¢(v,) N D, (the one
that contains ¢(I';) N D,.) is also reduced with respect to ¥. By the hypothesis
that ¢(I';) sets off more to the left than I';, we are now in one of the situations
indicated in figure 9.

T
D at least one puncture aD&it least one punclture
inside Dec inside D.. at least two punctures inside

D, separated by ¢(T;)

Figure 9: The critical disk D, containing T'; and ¢(T;)

A first possiblity is that an initial segment of ¢(I';) N D, lies to the left of the
tip of D, (figure 9(a) and (b)); in the universal cover D7 we now have three
arcs, namely @(7,)ND2, alifting of ¥, and 7,N D (and, in fact, a fourth arc,
another lifting of ¥) starting at the same point of dD7’, and setting off into
different directions, namely in the given order from left to right. Moreover, the
liftings of 3. are disjoint from the interiors of the other two arcs, by reducedness.
Thus the end point of @(7,) N D on dDT lies more to the left than the one
of 9, N DY. Even stronger, by Lemma 6.4 they lie either on different points
at infinity (in which case we are done) or they leave D7’ through different
components of 9D (in which case we argue as above that their remainders are

trapped in different components of DY\ D?, so that ¢(7,) stays to the left of
Yar)-

The second possibility is that some initial segment of ¢(I';) N D, lies in D,
(figure 9(c)); then D.., cut along this initial segment, has precisely two path
components, each of which contains at least one puncture. Since ¢(I';) is ori-
ented, we can refer to them as the “left” and the “right” half of D... We now
consider a geodesic arc o which is embedded in the right half of D.., starts
at the tip of D.. (ie at the same point as ['; N D, and ¢(I';) N D,), and falls
into one of the punctures in the right half of D... By construction, v, N D, is
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reduced with respect to o, since both are geodesics, and the first component of
@(74) N D, is even disjoint from ¢. In the universal cover we now have that
the lifting & of ¢ ends on the circle at infinity, thus separating D.. into two
components, the left one containing the lift of ¢(v,) N D, and the right one
the lift of v4,N D,.. Thus lifts of these two curves, not being allowed to intersect
any component of D7, and dD. more than once, go on to hit different points
of dD;, with ©(7,) staying more to the left than 7,. This completes the proof

of the theorem in the third case. D

Proof of Theorem 3.3(b) If v, fills D,, then C(v,) is a total curve dia-
gram, and thus induces a total ordering of B, . By corollary 6.2, the ordering
of B, associated to the point o € (0, 7) agrees with this ordering. O

Proof of Theorem 3.4(b) For any two geodesics v, and g of finite type
one can work out their associated curve diagrams C(7,) and C'(yg). By corol-
lary 6.2 it is sufficient to decide whether or not the orderings associated to the
two curve diagrams coincide, which can be done by Theorem 5.2. O

Proof of Theorem 3.5 It only remains to be proved that N, = M, (where
M,, is given in Proposition 5.3), ie that every curve diagram is realized up to
loose isotopy as C(7v,) for some geodesic v,, a € (0,7). This is left as an
exercise to the reader. O

7 Orderings associated to geodesics of infinite type

In this section we prove the results concerning orderings of infinite type, and
explain the essential differences between finite and infinite type orderings.

We start by describing in more detail than in section 3 the structure of geodesics
of infinite type. We define the curve diagram C(v,) associated to a geodesic
of infinite type by precisely the same inductive construction procedure as in
the finite type case. Except for a finite initial segment, the last arc I'; will lie
in some path component D, of D,\NT'gy..uj—1, the only difference with the
finite type case is that I'; goes on for ever, without falling into a puncture and
without spiralling. The closure of I'; inside this critical component D, is a
geodesic lamination; the lamination has no closed leaves, for such a leaf would
have to be the limit of an infinite spiral of I'; (see [15, Appendix]). All self-
intersections of the geodesic v, occur inside the finite initial segment up to the
entry into the punctured disk D.; in particular, there is only a finite number
of self-intersections.
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Proof of Theorem 3.3(c) We are studying the set
7 :={a € (0,7) | 7o is of infinite type }.

The proof uses standard results from the theory of geodesic laminations and
the Nielsen-Thurston classification of surface automorphisms [4, 15].

That Z has uncountably many elements follows from the fact that there are
uncountably many geodesic laminations of D, , only countably many of which
fall into infinite spirals. A more practical way of seeing this is to choose ar-
bitrarily a fundamental domain of D,, by fixing n geodesic arcs, as eg shown
in figure 1. Thus the fundamental domain is a 2n + 1-gon with one boundary
edge corresponding to dD,, and n pairs of boundary edges which are identified
in D, . A segment of the geodesic between any two sucessive intersections with
the boundary of the fundamental domain consists of an embedded arc connect-
ing different edges of the 2n + 1-gon. Hence constructing a geodesic of infinite
type amounts to choosing an infinite “cutting sequence” of the geodesic with
the boundary arcs of the fundamental domain. Often the choice will be forced
upon us by the requirement that the geodesic be embedded, but there will be
an infinite number of times when we have a genuine choice. Thus the set of all
possible sequences of choices is uncountable.

The cutting sequence approach also makes it clear why Z C (0, 7) is discrete and
its elements are nonisolated. Given o > 0 and € > 0, there exists an N, € N
such that all geodesics v3 whose cutting sequences agree with the one of 7,
for at least N, terms satisfy |a — | < €. Now elements of Z are nonisolated
because for any o € 7 and any € > 0 we can find a geodesic of infinite type
whose cutting sequence diverges from the one of v, only after the N.th term.
On the other hand, Z is discrete, because within the e-neighbourhood of v,
we can construct a geodesic which fills D,, in finite time: just choose it to have
a cutting sequence which agrees with the one of v, for N, terms, and to then
career ofl along some path which decomposes D,, into disks and once-punctured

disks.

Finally, the last part of theorem 3.3(c) holds because each of the countably
many elements of B, fixes only a countable number of points a € (0, 7) with
the property that v, fills D, . In order to see this, we note that for irreductble
elements of B,, theorem 5.5 of [4] states that there is only a finite number of
fixed points on the circle at infinity. If an element ¢ of B, is reducible, then we
leave it to the reader to check that the result follows from the following facts: (1)
One can find a maximal invariant system C' of disjoint properly embedded arcs
and circles in D,,. (2) If ¢ acts nontrivially on a component of D, \C' which is
cut in a nontrivial way by a finite segment of v,, then it acts nontrivially on 7,
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(for if it didn’t then the collection C' would not be maximal). (3) A geodesic
7o that fills D,, has to enter every component of D,\C at least once, and ¢
acts nontrivially either on the first or, failing that, on the second component
of 7o N (D,\C) (because it cannot act trivially on two adjacent components of
D,\C'). (4) There is a countable infinity of isotopy classes of embedded arcs
from the basepoint of D, to C'. O

We recall from the beginning of the section that to every geodesic v, of infinite
type we have associated a “critical disk” D, which contains most of the last
arc of C'(7,). The fundamental property of geodesics of infinite type which we
shall use several times is the following.

Lemma 7.1 For any geodesic of infinite type v, and for any € > 0 there exists
a geodesic v,+ with at € (a,a + €) such that v,+ falls into a puncture and
has no self-intersections inside D...

Proof It suffices to prove the lemma in the special case D, = D,,, ie when the
geodesic v, is embedded. We suppose, for a contradiction, that there exists an
€ > 0 such that no vy3 with 8 € (a, a+¢) is embedded and falls into a puncture.
Our aim is to reach the contradiction that <, ends in an infinite spiral.

We continue to use the notions concerning cutting sequences introduced above:
we choose arbitrarily a fundamental domain, and we shall denote by 7% the
initial segment of v, up to its kth intersection with the boundary of the funda-
mental domain. We recall that, given v, and € > 0, we can find an N = N, € N
such that any geodesic yg with 7év = I satisfies | — 3| < €. We now con-
sider the arc yV*!: it ends on some boundary arc of the fundamental domain
which we denote a. The orientation of v, gives rise to a notion of the part of
a “to the left” and “to the right of” the end point of ¥V+'. The arc ¥N*+! has
an intersection with the interior of the “left” part of a, for if hadn’t we could
obtain an embedded arc g with § € (a, @+ ¢€) by adjoining to the end point of
AN an arc falling into the puncture at the left end of a; this would contradict
the hypothesis. Thus it makes sense to define ' C D,, to be the union of v +1
and a segment of « from the end point of vY*! to the left, up to the next

(o3
intersection with v +! (see figure 10).

o
We now observe that D,\I' has two path components, each containing at least
one puncture; moreover, <, cannot intersect any geodesic arc connecting two
punctures in the same component, because the first time it did we could drop it
into the puncture at the left end of the arc and obtain a contradiction as before.
It follows that v, has to spiral along the boundary of one of the components
of D,\I'. O
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segment of ¢

Figure 10: The two possible shapes of T', and (dashed) the resulting geodesic 7,

Proposition 7.2 All orderings, even partial ones, arising from geodesics 7,
of infinite type are non-discrete.

Proof We shall prove the following stronger statement: for any ¢ > 0 there
exists an element ¢ € MCG(D,,) = B, such that p(a) € (o, 0+ ¢).

We choose o as in the previous lemma. We consider the boundary curve 7 of
a regular neighbourhood of dD.U~,+ in D.. This curve 7 is disjoint from =+,
while any curve isotopic to T necessarily intersects ~,. Thus for the positive
Dehn twist 7" along 7 we have that T'(a) > a (by Proposition 2.4), and that
T(at) =at. It follows that T'(a) € (o, a™) C (o, +€). m]

Proof of Theorem 3.4(a) Given a geodesic v, of finite, and a geodesic v3
of infinite type, our aim is to prove that v, and 7z cannot induce the same
orderings of B,,.

As seen in corollary 6.2, orderings arising from geodesics which fill the surface in
finite time are the same as orderings arising from total curve diagrams, which
are discrete by lemma 4.5. By contrast, we have from proposition 7.2 that
infinite type orderings are not discrete. This proves the theorem in the special
case where the finite type geodesic fills the surface.

In the case where the finite type geodesic v, does not fill the surface, we consider
the subsurface D, := D,\NC(7,), ie the maximal subsurface with geodesic
boundary which is disjoint from 7,. We observe that D, is a disjoint union of
disks, each containing at least two punctures. Any homeomorphism ¢ of D,
with support in D, has the property that ¢(a) = «.

If D,Nvg # 0 then there exists a homeomorphism ¢ with support in D,
such that ¢(f3) # 3, and it follows that the orderings induced by « and § are
different.
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If, on the other hand, D, N~z = 0, then we squash each component of D, to
a puncture; the result is a disk with say m punctures, where m < n, which
we denote D,,,. We now consider the subgroup BY of B,, = MCG(D,,) of
all mapping classes which fix those punctures of D,, that came from squashed
components of D,. This is a finite index subgroup of B,,, and the orderings of
B,, determined by « and # induce quotient orderings on BY . Another way to
describe these quotient orderings is to repeat the Thurston-construction for the
disk D,,: one can equip D,, with a hyperbolic metric, and then the geodesics
Yo and g project to quasigeodesics in D,,. These quasigeodesics determine
points at infinity of the universal cover of D,,, and hence give rise to orderings
of B,,.

The geodesic in D,, which is homotopic to the projection of v, is again of finite
type; the crucial observation now is that it fills D,,, so that the quotient order-
ing on BY is discrete by Lemma 4.5. Similarly, a geodesic in D,, homotopic
to the projection of 3 is again of infinite type, hence induces, by Proposition
7.2 a non-discrete ordering on B,,, and thus also on the finite-index subgroup
BP . So the a- and f-orderings on B, give rise to different quotient orderings
on BF , and are therefore different. O

As seen above, every geodesic of infinite type gives rise to a curve diagram “of
infinite type”, which is like a curve diagram of finite type, except that the arc
with maximal label is, up to isotopy, an infinite geodesic which does not fall
into a puncture or a spiral. All but a finite initial segment of this arc lies in
the “critical disk” D.. There is an obvious generalisation of the notion of loose
isotopy:

Definition 7.3 Two curve diagrams of infinite type are loosely isotopic if they
are related by (1) continuous deformation, ie a path in the space of all curve
diagrams of infinite type; and (2) pulling loops around punctures tight.

This is exactly the same as in the finite type case, except that no “pulling loops
around punctures tight”-procedure is defined for the last arc. We are now ready
to state and prove the main classification theorem for orderings of B,, of infinite

type.

Theorem 7.4 Two geodesics v, and vyg of infinite type give rise to the same
(possibly partial) ordering of B,, if and only if their associated curve diagrams
C'(va) and C(vg) are loosely isotopic.
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Proof By the results in the previous sections, it suffices to prove that two
embedded geodesics v, and g of infinite type give rise to the same ordering of
B, if and only if 8 = A?!(a) for some k € Z, ie if 7, and vz are related by a
slide of the starting point around 9D,,.

The implication “<=” is clear. Conversely, for the implication “=7”, we suppose
that v, and 3 are not related by a slide of the starting point, and without loss
of generality we say a > 3. Our aim is to construct a homeomorphism which
is positive in the - and negative in the g-ordering, ie which sends a “more to
the left” and 3 “more to the right”. Our argument will be a refinement of the
proof of the implication “=" of 5.2(a).

By lemma 7.1 we can construct embedded geodesics v,+ and 7yg+ which fall
into punctures, and lie an arbitrarily small amount to the left of v, respectively
v5- We define the curves 7,4+ and 73+ to be the geodesic representatives of the
boundary curves of regular neighbourhoods in D,, of dD,U~,+ and 0D, U g+
respectively. We denote by T+ respectively T+ the positive Dehn twists along
these curves. Our desired homeomorphism will be of the form Ta_f oTg+, with
carefully chosen values of o™ and 81, and k € N very large.

We also define the two-sided infinite geodesic 7, to be the geodesic which is
disjoint from +,, and isotopic to the boundary of a neighbourhood of v, UdD,,
in D,,. More formally, in the universal cover D]’ we consider two liftings of
Yo, namely 7, (which starts at the basepoint of D7), and the lifting whose
starting point also lies on Il and is obtained from the basepoint of D,, by lifting
the path once around 9D, . The end points of these geodesics lie on the circle
at infinity, and 7, is just the projection of the geodesic connecting them.

Since 7, and 7g are not loosely isotopic, we have that vs intersects 7,. By
choosing 3% sufficiently close to 3 we can now achieve that the initial segments
of 75 and g+ up to their first point of intersection with 7, are isotopic with
end points sliding in 7,. This gives our choice of 31, and it remains to choose
ot and k.

The crucial observation concerning 7, is that it can be arbitrarily closely ap-
proximated by the curves 7,4, by choosing o' sufficiently close to a. More
precisely, in the universal cover D7’ we consider the preimages of 7, and of
T,+. Each of them has infinitely many path components; we choose one dis-
tinguished component for each, namely the first ones that 75 intersects. Our
observation now is that as a® tends to a, the end points of the distinguished
component of the preimage of 7,4+ tend to the end points of the distinguished
component of the preimage of 7.
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We now turn to the choice of a®. By proposition 2.4 we have that Tg+ (@) > .
By lemma 7.1 we can now choose a' close to « such that T+ (a) > o > a.
By eventually pushing a® even closer to «, we can in addition insist (by the
observation concerning 7, above), that the initial segments of y5 and 3+ up
to their first point of intersection with 7,4 are also isotopic with end points
sliding in 7,+. This gives our choice of a™.

We have arrived at the following setup: we have the three points 87 = Ta+ (B%) >
Ts+(B) > B in ODF\IL, and they all lie between the two end points & and 4,
of the distinguished lifting of 7,+ (here the indices [ and r stand for “left” and
“right”, so &; > §,). For any point § with & > § > 6, we consider the action
of the positive Dehn twist T+ on the geodesic vs. We observe that the limit
limg oo Ta_f((S) = 0,. In particular for § := 37T it follows that for sufficiently

large k we have Ta_f (B%) < 3. This gives our choice of k.
To summarise, we have
Ta_f oTg+(a) > Ta_f(o[") =at >a
and
Tof o Tgr(B) < T o Tpe (%) = T (BY) < B,

ie Ta_f o T+ is positive in the a-, but negative in the (-ordering. O

Proof of Theorem 3.4(c) This is an immediate consequence of Theorem 7.4
O

Acknowledgements We are very grateful to W.P. Thurston for sharing with
us his idea for the construction of orderings on MCG(S). We also thank the fol-
lowing people for helpful comments: S. Chmutov, D. Cooper, L. Paris, D. Rolf-
sen, C. Rourke, L. Rudolph, and M. Scharlemann. B.W. was supported by a
TMR Marie Curie research training grant from the European Community.

References

[1] G. Bergman, Right orderable groups that are not locally indicable, Pacific J.
Math. 147 (1991), 243-248

[2] B.Bowditch, A variation on the unique product property, Southampton preprint

S

R.G. Burns, V.W.D. Hale, A note on group rings of certain torsion-free groups.
Canad. Math. Bull. 15 (1972), 441-445

[4] A. Casson, P. Bleiler, Automorphisms of surfaces after Nielsen and Thurston,
LMS Student Texts 9, Cambridge University Press 1988

31



P. Dehornoy, Braid groups and left distributive operations, Trans. AMS 345
(1994), 115-150

T. Delzant, Sur ’anneau d’un groupe hyperbolique, C. R. Awad. Sei. Paris Série
I, 324 (1997), 381-384

E. Elrifai, H. Morton, Algorithms for positive braids, Quart. J. Math. 45 (1994),
479-497

R. Fenn, M. T. Greene, D. Rolfsen, C. Rourke and B. Wiest, Ordering the braid
groups, Pase. J. Math. 191 (1999), 49-74 http://nyjm.albany.edu:8000/Pac]

E. Ghys, Le Cersle a 'infini des Surfases a mourbure Négative, Pros. Int. Cong.

Math., Kyoto (1990), 501-509.
E. Ghys, Groups asting on the eirele, Lesture notes IMCA, Lima, June 1999

J. Howie, H. Short, The band-sum problem, J. London Math. Soe. 31 (1985),
571-576

D. Kim, D. Rolfsen, Ordering groups of pure braids and hyperplane arrange-
ments, UBC preprint 1999

L. Neuwirth, Knot groups, Annals of Mathematies Studies, No. 56 Prineeton
University Press, Prineeton, N.J. 1965

L. Neuwirth, The status of some problems related to knot groups. Topology
Conferenee (Virginia Polytesh. Inst. and State Univ., Blasksburg, Va., 1973),
209-230. Lesture Notes in Math., Vol. 375, Springer, Berlin, 1974

J.-P. Otal, Le théoreme d’hyperbolisation pour les variétés fibrées de dimension

3. Asterisque 235 (1996)

D.S. Passman, The algebraie strusture of group rings. Pure and Applied Math-
ematies. Wiley-Interseienee (1977)

A. H. Rhemtulla, R. Botto Mura, Orderable groups. Lesture Notes in Pure and
Applied Mathematiss, Vol. 27. Mareel Dekker Ine., New York-Basel, 1977

A. H. Rhemtulla, D. Rolfsen, to appear

C. Rourke, B. Sanderson, Piesewise linear topology, Springer Ergebnisse der
Mathematik und ihrer Grenzgebiete 69, (1972)

C. Rourke, B. Wiest, Order automatie mapping elass groups, to appear in
Pae. J. Math.

N. Smythe, Trivial knots with arbitrary projestion, J. Austral. Math. Sos. 7
(1967), 481-489

W. Thurston, Personal sommunieation

B. Wiest, Dehornoy’s ordering of the braid groups extends the subword ordering,
Pae. J. Math. 191 (1999), 183-188

32



