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§0 Introduction: Dehn’s 3 Questions

1) Theword problem.

2) The conjugacy problem.

3) Theisomorphism problem.

4) Boone and Novikov’s answer: No!

5) The geometric viewpoint: Cayley graphs.

6) A group G hassolubleword problemif and only if its Cayley graph can be constructed
recursively.

7) Dehn’s solution to the word problem for hyperbolic surface groups.

61 Cayley graphs and hyperbolicity

1) Givenagroup GG and afinite generating set G, the following are equivalent:
i) Trianglesin I arethin.
i) Trianglesin I arethinin aparameterized way.
iii) Bigonsin I' arethin.
IV) G hasalinear isoperimetric inequality.
V) G hasasub-quadratic isoperimetric inequality .
vi) G hasaDehn’s agorithm.
vii) Geodesicsin I" exhibit exponentia divergence.
viii) Geodesicsin I' exhibit super-linear divergence.
2) Milnor’'stheorem: If G acts co-compactly and discretely by isometries on ageodesic
metric space X, then the Cayley graph of G isquasi-isometricto X .
3) If G acts co-compactly and discretely by isometries on a negatively curved geodesic
metric space X, then G ishyperbolic.
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62 Elementary propertiesof hyperbolic groups

1) Behaviour of geodesics and quasi-geodesics: progression in geodesic corridors.
2) Hyperbolicity is aquasi-isometry invariant.

3) Finite presentation, solubility of the word and conjugacy problems.

4) Finitely many conjugacy classes of torsion elements.

5) TheRipscomplex and FP,,.

6) The boundary.

63 Isoperimetricinequalities

1) Areaof aword via products of conjugates of relators.

2) Areaof aword via Van Kampen diagrams.

3) Dehn’sfunctions and isoperimetric functions.

4) A group has soluble word problem if and only if it has arecursive Dehn’s function if
and only if it has a sub-recursive Dehn’s function.

5) Equivalencerelation and ordering for isoperimetric functions.

6) Consequently solubility of the word problem is a geometric property.

64 The JSJ decomposition
1) Splittings of hyperbolic groups.

65 Regular languages, automatic, bi-automatic and asynchronously
automatic groups

1) Definitions.
2) Thefellow traveler property.
3) Theseashell: finite presentation, quadratic isoperimetric inequality and quadratictime
word problem.
4) Closure properties.
i) Free products.
it) Direct products.
iii) Freefactors.
iv) Finiteindex subgroups.
V) Finiteindex supergroups.
vi) HNN extensions and free products with amalgamation over finite subgroups.
vii) Bi-automatic groups are closed under central quotients and direct factors.
5) Famous classes of automatic groups.
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i) Hyperbolic groups including: free groups, finite groups, most small cancella-
tion groups, fundamental groups of closed negatively curved manifolds and other
negatively curved spaces.

i) Small cancellation groups.
iii) Fundamental groups of geometric three manifolds except for those containing a
nil or solv manifold as a connected sum component.
iv) Coxeter groups.
V) Mapping class groups.
vi) Braid groups and more generally, Artin groups of finite type.
vii) Central extensions of hyperbolic groups.
viii) Many amalgams of hyperbolic groups aong rationa subgroups.
iX) Many groups that act on affine buildings.
6) Regular languages, cone types and the falsification by fellow traveler property.
7) Bi-automatic groups
i) Hyperbolic groups are geodesically bi-automatic.
i) Bi-automatic groups have soluble conjugacy problem.
8) Asynchronous automaticity

§6 Equivalence classes of automatic structures

1) Theasynchronous fellow traveller property, rationality and bi-automaticity.

§7 Subgroups of automatic groups

1) Let L be a(synchronous or asynchronous) automatic structure for &, and suppose
H < G. Thenthefollowing are equival ent:
i) H is L-rational.
i) H is L-quasi-Convex.
iii) Inthe case where GG ishyperbolicand L issynchronous, these are equivalent to:
H isquasi-geodesicin G.
2) A rational subgroup of an automatic (bi-automatic, asynchronously automatic, hyper-
bolic) group is automatic (bi-automatic, asynchronoudy automatic, hyperbolic).
3) Centers and centralizers of bi-automatic groups are rational, hence bi-automatic.
i) Consequently a hyperbolic group does not contain a Z* subgroup.

68 Almost convexity

1) Definition.
2) Building the Cayley graph.
3) Almost convexity is not a group property.
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§9 Growth functions and growth rates

1) Finite cone typesimplies rational growth function.
2) Gromov’stheorem: polynomia growth impliesvirtually nilpotent.
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0. Introduction

Geometric group theory is the study of groups from a geometric viewpoint. Much of
the essence of modern geometric group theory can be motivated by a revisitation of
Dehn'’s three decision-theoretic questions, which we discuss below, in light of a modern
viewpoint. This viewpoint is that groups may be profitably studied as geometric objects
intheir own right. This connection between algorithmic questions and geometry isat first
surprising, and is part of what makes the subject attractive.

As Milnor’s theorem (see below) teaches us, the geometry exists both in the group
itself and in the spacesit actson. Thisis another powerful motivation for the subject, and
was historically one of the turning points.

0.14 Dehn’s praoblems.

Early in this century Dehn proposed three seminal questions [D].

Suppose we have a group G given in some way, and aset G of generators for the
group. The word problem asks if there is a procedure to determine whether two words
wy and wsy In these generators represent the same element of . Since we may ook
a w; 'ws, it isequivalent to ask for a procedure to decide if aword w represents the
identity.

Noticethat if § and §’ aretwo finite generating setsfor & then the word problemis
soluble with respect to G if and only if it is soluble with respect to §'. For suppose we
aregivenaword w = ay ...ay inthelettersof §'. Each letter a; has the same value
in G assomeword w; = b1 ...b;;;) inthelettersof §G. Thusit requires only afinite
look-up table to trandate aword in the lettersof G’ intoonein §G.

However, there is less here than meets the eye. We have said nothing about how to
find the finite look-up table a; — b;1 ...b;;¢;). Thus while we have demonstrated the
existence of an algorithm for the word problemin G’ from the existence of onein G, we
may have no way of finding that solution.

Theconjugacy problem asksif thereisaprocedure to determine whether the elements
g1 and g» of G represented by two words w; and w, are conjugatein G, that is, does
thereexist ¢ € G with ¢ = g7 'g1¢. Notethat if such aprocedure exists, then, taking
g2 = 1, we solve the word problem also.

The isomorphism problem asks for a procedure to determine whether two groups are
isomorphic. Thegroupsareusually assumed to begiven by presentations(a” presentation”
isacollection of generatorsfor thegroup plussome sufficient collection of relationsamong
these generators).

Dehn'’s three questions are remarkable in that they precede by many years the for-
malization of “procedure" as “agorithm” by Church, Turing, et a. and by two more
decades the resolution of the word problem by Boone and Novikov in the 1950's. They
show that there is a finitely presented group with recursively unsolvable word problem.
The unsolvability of the conjugacy problem isimmediate, and that of the isomorphism
problem also follows. For more details see C.F. Miller's notes for this Workshop.
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0.5 Cayley graphs

There is a standard method for turning a group and a set of generators into a geometric
object. Given the group G and generating set § we produce the directed labeled graph
I' =T'g(G). Theverticesof I' arethe elements of G and we draw adirected edge from
g to ga withlabel « foreach ¢ € G and a € G. Wewill refer tothisedgeas (g, a, ga).
This graph is called the Cayley graph. It comes equipped with a natural left action of
G. G actson vertices by left-multiplication and 7 € G carries the edge (g, a, ga) to
(hg,a,hga).

By forgetting directions on edges and making each edge have length 1, we can turn
I' into ametric space. Thisinduces the word metric on the vertex set G:

d(g,9') = min{len(w) : ¢' = gwin G }.

This metric depends of course on the chosen set of generators G. But we will see below
that upto “quasi-isometry” it does not depend on this choice (if the generating set isfinite)
and that many geometric properties depend only on G.

Weuse G* to denote the set of all words on lettersof G, including the empty word e
and for w € §* weuse w to denoteitsvaluein G. Any w € G* represents a unique
edge path in T" based at the identity 1. Using the same symbol « for the word and
the path will not lead to confusion. We parameterize w by arc-length, so it is a map
from [0,len(w)] to I". Itis often convenient to extend this map to [0, oc) by defining
w(t) = w for t > len(w). Thepath w isageodesicif d(1,w) = len(w).

0.6 Theword problem and Cayley graphs

The word problem has a smple characterization in terms of the Cayley graph. A word
w € G* labelsapath starting at the identity and ending at thevalue w € G. Evidently, a
word represents the identity if and only if it isaclosed loop. It follows that

Theorem. G = (G) hassolubleword problemif and onlyif thereisanalgorithmcapable
of constructing any finite portion of I's(G).

For suppose we are in possession of such an algorithm, and we are given the word w.
The path w liesentirely inside the ball of radius len(w) around the identity. We use our
algorithm to construct this ball and then follow w to seeif it returnsto the identity.

On the other hand, suppose we are given an algorithm to solve the word problem in
(. To congtruct the ball of radius »n around the identity, we enumerate the words of
length less than or equal to » in G*. We then use our algorithm for the word problem
to determine which of these areequal in G. Equality in G isan equivalence relation on
G*. Pick arepresentative (say a shortest representative) in each equivaence class. Now
for each a € § and each pair ¢, ¢’ of representatives, use word problem agorithm to
determineif (g,a,¢’) isan edge.
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0.7 Dehn’s solution to the word problem for hyperbolic surface
groups.

The previous algorithms are wildly impractical in most situations. There is a beautiful
and highly efficient solution to the word problem for hyperbolic surface groups. Let us
start by describing an inefficient solution to the word problemin Z2.

If we take Z? in the standard presentation (z,y | zya~'y~!), the Cayley graph
embeds in the Euclidean plane as the edges of the tessellation by squares. We can see
this embedding as an expression of the fact that Z* acts by isometries on the Euclidean
plane. The quotient of the Euclidean plane by thisaction isthetorus. Now we are entitled
to see the tessellation of the plane by sguares as being the decomposition of the plane
into copies of a fundamental domain for this action. However, there is a little piece of
deight-of-hand going on here. To seethis, let’s start with the torus.

If we cut the torus open along two curves, it becomes adisk, in fact, if we choose the
two curves correctly, it is a square. That is, the torus is the square identified aong its
edges. If welook for the generators of the fundamental group, they are dual to the curves
we have cut along. That is, if we take a base point in the middle of the square, = isthe
curve which starts at the base point, heads towards the right edge of the square, reappears
a the left edge and continues back to the base point. Likewise, y is the vertical path
which rises to the top edge and reappears at the bottom. Thus the fundamental group is
generated by the act of crossing either of the cut curves,

Thus, after choosing a base point, the natural relation between the tessellation of the
plane and the embedding of the Cayley graph into the planeis that they are dual. That
is, there is a vertex of the Cayley graph in the center of each copy of the fundamental
domain, and there is an edge of the Cayley graph crossing each edge of the tessellation.

Thereason it was not immediately obvious that the tessellation and the Cayley graph
are two different things is that the tessellation of the plane by squares is self-dual. That
is, if we start with the tessellation of the planes by squares and replace each vertex by
a 2-cell and each 2-cell by a vertex (thus getting new edges crossing our old edges) the
result isanother tessellation of the plane by squares. Contrast thiswith the tessellation of
the plane by equilateral triangles which isdua to the tessellation of the plane by regular
hexagons.

Now as we have seen, finding the Cayley graph for Z? solves the word problem for
Z*, but it does not lead to a particularly efficient solution.

This situation changes if we turn to the fundamental group of a hyperbolic surface,
i.e., asurface of genus 2 or more. If we wish to cut open a surface of genus 2, we will
need 4 curves, and when we have cut it open, we will have an octagon as our fundamental
domain. Likewise, looking at the vertex where our cut curves meet shows that we will
want to tessellate something with 8 octagons around each vertex. This suggests that we
would like regular octagons with interior angles of 45°. We can havethisif we chooseto
work in the hyperbolic plane. In fact, the hyperbolic plane can be tessellated by regular
octagons with interior angles of 45°.

Once again, the Cayley graph is dual to the tessellation, and this tessellation is also
self-dual, so the Cayley graph embeds as the edges of this tessellation. In fact, reading
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the labels on an octagon tells us that our fundamental group has the presentation

G = <$1,y1,$2,y2 | [$1,y1][$2,y2]>-

Given a sub-complex X of this tessellation, we define Star(X) to be X together
with any fundamental domains which meet X. Now suppose we start with a vertex x
of this tessellation (identified with the identity) and consider Star™(x) for successve
valuesof n. We can then observe that each fundamental domain that meets the boundary
of Star”(x) meetsitinatleast 5 of its 8 edges.

Suppose now that we are given aword w which represents the identity. We consider
w asapath based a . Thereisasmallest n sothat w liesentirely in Star”(x). If
n = 0 then w isthe empty word. If w # 0, then there is some portion « of w which
liesin Star™(x), but notin Star™ ' (). Suppose u isamaximal such portion. Then
one of 2 things happens. Either:

1) u returnsto Star™ '(x) along the same vertex by which it Ieft it, in which case w
is not reduced or
2) u travels along the > 5 edges of some 2-cell F which meet the boundary of

Star"™(x). Call thisportion wug.

Inthefirst case, w can be reduced in length by deleting asubword of theform aa™!,
producing anew word w; withthe samevaluein G.

In the second case, we take w«; to bethe path so that uqu; formsthe boundary of F'.
We now have uou; evaluating to theidentity, so u; ' and u, havethe samevaluein G.
Further, len(u;) <3 < 5 < len(uo).

If we work with a surface of genus greater than 2, the numbers change, but the
argument stays the same. Thus we have proven:

Theorem (Dehn). Let G bethefundamental group of a closed hyperbolic surface. Then
thereisa finite set of words D = {vy, ..., v; } with each v; evaluating to the identity,
so that if w is a word representing the identity, then there issome v; = wpuy € D 0
that «w = auef and len(uy) < len(ug).

Thisgives avery efficient solution to the word problem. Given aword w we look for
an opportunity to shorten it and do so if we can. After at most len(w) such moves we
either arrive at the empty word or we have no further opportunities to shorten our word.
If the first happens, we have shown that w representsthe identity. If the second happens,
we have shown that it does not.

1.1 Hyperbolicity

Let G be afinitely generated group with finite generating set G andlet I' = I'q(G) be
the corresponding Cayley graph.

i). Wesay that I' has thin triangles if there existsa ¢ such that if «, 3, and ~ are
sides of ageodesic trianglein T' then « liesina §-neighbourhood of 5 U ~.

if). We can give a parameterized version of the above condition. We first note the
following. If A = «af~ is ageodesic triangle, then the sides of A decompose (as
paths parameterized by arclength) as a = agay', 8 = BofB{ ", ¥ = vy, ' o that
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len(a) = len(fo), len(B1) = len(~o), and len(~1) = len(ag). (Thisisthe triangle
inequality. Exercise!)

The parameterized version of the previous condition is that there exists ¢’ such that
for any such triangle each of the pairs a1, 5o; (1, 70, 71, ao ¢ -fellow travel, that is
d(aq(t),Bo(t)) < 6" for 0 <t <len(ey) and so on. The reader may wish to check that
6" = 2§ suffices.

iii). Wesay that I' hasthin bigonsif thereisa ¢ such that for every pair of geodesics «
and 4 with the same endpoints, d(«(t),5(t)) <6 for 0 <t <len(«a). (Wecdl such a
pair ageodesic bigon.) Warning: we are here treating I" as a bona fide geodesic metric
gpace. Accordingly, we must allow the endpoints of geodesics to occur in the interior of
edges.

iv). We shall seethat agroup obeying any of these conditionsisfinitely presented. That
isto say, thereis a presentation

(§1X)

where X consists of afinite set of words wy, ..., w; ontheset of generators § and G
isisomorphic to the quotient of the free group on G by the normal closure of X.
Another way of saying thisisthat aword w inthelettersof G representstheidentity
in G if and only if it isfreely equal to aproduct of conjugates of elementsof X**. Thus
awordin G representstheidentity if isequal (inthefreegroup on X to an expression of

theform
:|: —
H plellpl 1'
=1

We say that G has alinear isoperimetric inequality if thereisaconstant A so that for
any trivial word w we can satisfy this equation with » < K len(w).
V). Wesay that G hasasub-quadraticisoperimetricinequality if thereisasub-quadratic
function f(n) sothat for any word w presenting theidentity, « can be freely expressed
as the product of at most f(len(w)) conjugates of defining relators.

vi). We say that G has a Dehn’s algorithm if there is a finite set of wordsD =
{vy, ..., vr} witheach v; evaluatingtotheidentity, sothatif «v isaword representing the
identity, then thereissomev; = upu; € D sothat w = auef and len(uy) < len(uo).
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We have seen that this gives an algorithm. Given aword w, we can replace it with
the shorter word au[ '3 which evaluates to the same group element. If w doesin fact
represent the identity, after at most len(w) such moves, we are left with the empty word.
If « does not represent the identity, after at most len(w) such moves, we are left with a
word which we cannot shorten.

vii). Wewill say that geodesics diverge exponentially in T" if thereisaconstant £ and
an exponentia function ¢** (k > 0) with the following property: Suppose that « and
(3 are geodesic rays based at acommon point P. Suppose that thereisavalue R so that
d(e(R),3(R)) > E. Suppose now that p isapath connecting o(R +t) to B(R + t)
and that p liesoutside the ball of radius R + ¢ around P. Then len(p) > e*!.

viii). We will say that geodesics diverge uniformly in I' if thereisaconstant £ and a
function f(¢), lim;—, . f(¢) = oo, with the following property: Supposethat « and
are geodesic rays based at a common point P. Suppose that thereisavaue R so that
d(e(R),3(R)) > E. Suppose now that p isapath connecting o(R +t) to B(R + t)
and that p lies outside the ball of radius R + ¢ around P. Then len(p) > f(t).

Theorem. All the above conditions are equivalent and independent of generating set. A
group satisfying themis called word hyperboalic.

Conditionsi), ii), and vii) are equivaent to each other for any geodesic metric space
and are characterizations of atype of hyperbolicity in such spaces called Gromov-Rips
hyperbolicity. In a class of spaces including complete ssimply connected riemannian
manifolds they are also equivalent to linear isoperimetric inequality. In these spaces
linear isoperimetric inequality means the existence of a constant A such that a closed
loop [ can aways be spanned by a disk of areaat most % len(/).

The thin bigons condition is equivalent to Gromov-Rips hyperbolicity in any graph
with edges of unit length (see [ Pa2]), but certainly not in arbitrary geodesic metric spaces
(think of euclidean space!).

Conditionsi), ii), iv), vi), and vii) can be found in general expositions such as[ABC],
[B], [C3], [CDP], [GH]. Conditions v) and viii) can be found in [Pal].

1.2 Cayley graphsand group actions

We say that a metric space (X, dx) isageodesic metric space if distances in X are
realized by geodesics in X Thatis, given «,b € X, thereisapath p connecting « and
b sothat dx(a,b) = len(p) and len(p) isminimal among all paths connecting « and b.

Amap f:(X,dx)— (Y,dy) isa (A e) quas-isometric map if for al a,b € X,
Tdx(a,b) —e < dy(f(a), f(b)) < Adx(a,b) + e. Note that such a map need only
be amost continuous. A quasi-isometric map is a map which is (), €) quasi-isometric
for some (\,e). A quas-isometric map is a quasi-isometry of X and Y if there
IS a quasi-isometric map ¢ from Y to X and a constant # so that for al = € X,
dx(z,g(f(2))) <k andforal y € Y, dx(=, f(g9(y))) < k. Inthiscase we say X
and Y are quasi-isometric. Thisis an equivalence relation on the class of metric spaces.
Given afinitely generated group G all Cayley graphsof G are quasi-isometric.
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Suppose now that (X, d) is ageodesic metric space. Suppose that G is a finitely
generated group which acts by isometries on X. Suppose further that this action is
discrete and co-compact. “Discrete” means that if ¢,,¢2,... IS a sequence of distinct
group elements then for «+ € X the sequence gz, g2z, ... does not converge (thisis
dightly weaker than “proper discontinuity”). “Co-compact” means that the orbit space
X/G iscompact.

Let usfix agenerating set § for G and pick a basepoint, « € X. The map which
takes g € G to g(x) € X takes 1 to #, is G-equivariant, and is finite-to-one since the
action of G isdiscrete. For each ¢ € G, we choose apath p, from * to ¢g(*). We now
have amap

¢:Tg(G) —» X

defined by taking each vertex ¢ of I' to g(x), and each edge (a,¢,b) of I' to a(p,).
(Strictly spesking, we must parameterize both the edge (a, g,b) and the path p, by the
unit interval and take (a, ¢,b)(t) t0 a(p,(t)).)

Theorem (Milnor) [M]. Themap ¢ isa quasi-isometry.

This is not a particularly difficult theorem — indeed, the reader may wish to try to
prove it as an exercise. However, as mentioned in the Introduction, it was one of the
turning points in the development of modern geometric group theory.

1.3 Groupsacting on hyper bolic spaces.

Inview of Milnor’s Theorem, we will want to see that any space which is quasi-isometric
to a hyperbolic space isitself hyperbolic. Thiswill show that co-compact discrete action
of agroup G onahyperbolic space X “transfers' the hyperbolicity of X to G. It will
also show that hyperbolicity isindependent of generating set.

2.1 Quasi-geodesicsin a hyperbolic space

A geodesic ~ is an isometric map of the interval [0,len(~)]. (You may take this a
definitionof len(v).) A (A, €)-quasi-geodesic « isa (), e)-quasi-isometry of theinterval
[0,len(a)]. Here are several characterizations of the relationship between geodesics and
guasi-geodesics in a hyperbolic space.

Given apath ~ itisoften convenient to extend it to amap defined on [0, co) by setting
~(t) = v(len(~)) for ¢ > len(~). We use this convention in the following theorem.

Theorem. Thereare N = N(6,\,¢), K = K(4,\,¢), and L = L(4, \,e) sothatif o
isa (A, e)-quasi-geodesic and ~ isageodesicin X and X is §-hyperbolic, and « and
~ have the same endpoints, then each of the following hold:

i). Eachof o and ~ iscontained inan NN -neighbourhood of the other.

i). « and ~ asynchronoudy K -fellow travel. That is, there is a monotone surjective
reparameterization ¢ — ¢’ of [0, 00) sothat for all ¢ we have d(a(t),~(t')) < N.

iii). « progresses at some minimumrate along ~. That is, the reparameterization of ii)
can bechosen sothat ¢ > to + L implies t’ > t{ + 1.
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Thislast is sometimes referred to as “progression in geodesic corridors.”

2.2 Hyperbolicity isa quasi-isometry invariant

We now prove that hyperbolicity is a quasi-isometry invariant using the previous theorem
and apicture.

Theorem. Supposethat X and Y are quasi-isometric geodesic metric spaces. If Y is
hyperbolic, sois X.

f(P)

f(Q)

2.3 Word and conjugacy problem for hyperbolic groups

It follows immediately from the existence of a Dehn’s algorithm that a hyperbolic group
has a highly efficient solution to itsword problem. Most early solutions to the conjugacy
problem used the boundary of a hyperbolic group, which will be described later. We will
give aproof in §5.7 due to Gersten and Short which works in the more general setting of
biautomatic groups, and which does not use the boundary.

2.4 Torsion in hyperbolic groups

Thereisacharming proof that hyperbolic groups have finitely many conjugacy classes of
torsion elements based on the Dehn’s algorithm. See for example, [ABC].

2.5 TheRips Complex
A fundamentally important property of a hyperbolic group G is:

Theorem (Rips). Let G be a hyperbolic group. Then G acts properly discontinuousy
on a finite dimensional contractible complex Y~ with compact quotient.

Such a complex is easy to describe. We start with a Cayley graph I' for G and
take the geometric redlization Y = |P,;(I")| of the following abstract simplicial complex
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P4(T") for an appropriate bound d. Vertex set of P,;(I") is G and the smplices consist
of subsets of GG of diameter at most d in the word metric. It turnsout that d = 46 + 1
aways suffices. A very efficient proof of Rips theoremisgivenin [ABC].

This theorem has important homological implications for G. For example, if G is
virtually torsion free (i.e., has a torsion free subgroup of finite index) then it has finite
virtual cohomologica dimension and in any case its rationa homology and cohomology
is finite dimensional. It is an important open problem whether a hyperbolic group is
always virtually torsion free.

Another interesting consequence is that non-vanishing homology implies a lower
bound for the hyperbolicity constant § = §(G) for G among all finite generating sets for
G.

2.6 Theboundary of a hyperbolic group

For a hyperbolic group G (in fact more generally for any Gromov/Rips hyperbolic
metric space) thereisanatura compactification of G by adding a“boundary at infinity.”
Roughly speaking the boundary consists of the set of all ways to travel off to infinity.
One way of making this precise is to define a geodesic ray in a Cayley graph I' for G
asanisometry of [0,00) into I" and to say two rays are equivalent if they fellow travel.
The boundary 0G (which in fact is a quasi-isometry invariant and thus does not depend
on the choice of generating set) is the set of equivalence classes of geodesic rays. The
topology on G can be defined in a multitude of ways. Basicly two points are close if
their rays fellow travel for along time. One way to formalize thisis to take the compact
open topology on the set of rays and take the quotient topology on 0G.

Thereare also many ways of describing how to attach thisboundary to G or itsCayley
graph I'. One obtains a compact Hausdorff space into which both G and G embed.
We leave as an exercise how to attach the boundary: the construction is highly stablein
the sense that any reasonable answer you give will be correct (see [NS1]).

3.1 Areaof aword that representsthe identity

Aswe have seen, agroup G with presentation

(§1X)

isisomorphicto Fg/N(X), where Fg isthefreegroupon § and N(X) isthe normal
closureof X in Fg. It followsthat aword w € G* representsthe identity in & if and
only if itisfreely equal (that is, equal in Fg) to an expression of the form

k
[1riRiri
=1

where esch R; € X*!. Thus, solving the word problem in G means determining the
existence or non-existence of such an expression for each w.

A naive approach would be to start enumerating all such expressions in hopes of
finding one freely equal to our given w. If w represents theidentity, we must eventually
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find the expression that proves this. The problem with this approach is knowing when to
giveupif w doesnot represent theidentity. Let us formalize this quandary.

Suppose wetake aword w representing theidentity in G. Wedefinethearea, A(w)
to be the minimum % in any such expression for w.

3.2 Van Kampen diagrams

The choice of the word area is motivated the notion of a Van Kampen diagram for w.
Such adiagram A isalabeled, smply connected sub-complex of the plane. Each edge
of A isoriented and labeled by an element of §. Reading the labels on the boundary
of each 2-cell of A gives an element of X*'. A isaVan Kampen diagram for w if
reading the labels around the boundary of A gives w.

a a
Van Kampen diagram for theword a*babab™'a=2ba=2b2 in (a,bla™ b~ abd)
Theorem. Each Van Kampen diagram with & 2-cells for w gives a way of expressing
k k
w asaproduct []piRip;". Eachproduct J[piRip;" for w gives a Van Kampen

=1 =1
diagram for w with at most & 2-cells. In particular, w has a Van Kampen diagram if
and only if w represents the identity.

Thus, we could have defined A(w) to be the minimum number of 2-cells in a Van
Kampen diagram for w.

3.3 Dehn’sfunction of a presentation

We define the Dehn’s function of the presentation (G | X) to be
d(n) = max{A(w) | len(w) < n}.

Thismaximum istaken over words presenting the identity. We say f isan isoperimetric
function for (G | X) if f(n) > é(n). (Aswe shall see below, “isoperimetric function”
is often used in a sense between these two.)
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3.4 Isoperimetric functions and the word problem
Either of these functions answers the question, “When should we give up?'

Theorem. G = (G | X) has a soluble word problem if and only if it has a recursive
Dehn’s function if and only if it has a sub-recursive Dehn’s function (and the same for
isoperimetric functions).

A function f isrecursive if it can be computed by some computer program. It is
sub-recursive if thereisarecursive function ¢ sothat f(n) < g(n) forall n > 0.

Proof. If agivenword w representstheidentity, we can eventually exhibit aVan Kampen
diagram for it by sheer perseverance. The Dehn’s function (if we can compute it or an
upper bound for it) tells us the maximum number of 2-cellsin any Van Kampen diagram
we must consider. Now, the number of possible Van Kampen diagrams with a given
number of two cellsis unbounded, because such diagrams may have long 1-dimensional
portions. However, the length of the boundary of such a diagram is at least twice the
total length of the 1-dimensiona portions. Thus any possible diagram for w has at most
§(len(w)) 2-cells and at most ; len(w) 1-cells that are not on the boundary of some
2-cell. If we examine all of these and find none whose boundary is w, we know that w
does not represent the identity. O

One interpretation of this theorem is that there is only one way for a group to fail to
have a soluble word problem: its Dehn function grows too fast.

3.5 Equivalence of isoperimetric functions

Actua Dehn functions and isoperimetric functions are too specific for our purposes, but
there is a natural equivalence relation and partial order which are appropriate here. For
positive valued functions on the natural numbers we say

f=yg
if thereare positive A, B, C, D and E so that
f(n) < Ag(Bn+C)+Dn+E

fordl n. Wesay that f and ¢ areequivalent if f < ¢ < f. Under this relation any
two polynomials of the same positive degree are equivalent, and the equivaence class of
linear and sub-linear functionsisthe least equivalence class. Any two exponentials (with
base greater than 1) are equivalent.

Theorem. Suppose G and H are quasi-isometric finitely presented groups. Then the
Dehn’sfunctionsof G and H areequivalent. Inparticular, up to equivalencethe Dehn's
function of G isindependent of presentation.

One says G has a linear (quadratic, exponential, etc.) isoperimetric inequality,
meaning that what we have called its Dehn function is of the appropriate class.
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3.6 Theword problem isgeometric

Theorem. The property of having soluble word problem isa quasi-isometry invariant of
finitely presented groups.

This follows because the property of being sub-recursive is an equivalence class
invariant of functions.

Since groups with unsolvable word problem exist, isoperimetric functions can be of
enormoudly rapid growth. In fact, by their definition, non-sub-recursive functions can be
thought to have “inconceivably rapid growth.”

It is not hard to find groups with solvable word problem with very fast growing
Dehn functions — for example, Gersten has pointed out [G] that for any % the function

fr(n) =22 (k levels of exponent) is alower bound for the isoperimetric function
for the group (z,y|z*" = z?) (the notation «® is a shorthand for b='ab). Clearly,
the algorithm proposed above for the word problem — enumerating all Van Kampen
diagrams up to the size given by the Dehn function — is absurd when one has a Dehn
function that grows thisfast (or even exponentially fast). For specific groups much faster
algorithms can often be found.

4 JSJ decomposition.

The name JSJrefersto Johannson, and Jaco and Shalen, who devel oped atheory, building
on earlier ideas of Waldhausen, for cutting irreducible three-dimensional manifolds into
pieces aong tori and annuli. Later Thurston explained these decompositions from a
geometric point of view in hisfamous“ Geometrization Conjecture" for 3-manifolds. One
can describe JSJdecompositionintermsof amal gamated product and HNN decomposition
of therelevant fundamental group, andinfact apurely group theoretic version of thetheory
has been worked out by Kropholler and Roller.

Around 1992 Zlil Sela pointed out that analogous decompositions appear to exist
for groups in a much broader range of Situations. First Sela did this for torsion free
hyperbolic groups and then Sela and Rips extended it to general torsion free finitely
presented groups. Thisis currently avery active area of research, and we can only touch
on some of its coarsest elements here. Since some of the magjor players are here at this
workshop (Swarup, Bowditch), we can hope to learn more in seminars. In fact we are
indebted to them for the information in this section, although any errors in it are our
responsibility.

Thetheory aso has originsin work of Stallings on “ends of groups.” The set of ends
of alocally compact space X isthe limit over larger and larger compact subsets i of
X of the set of components of X — K. The set of ends of afinitely generated group G
isthe set of ends of any connected space on which G acts freely with compact quotient
— for example one may take a Cayley graph of the group. The definition turns out to be
independent of choices. For example, Z hastwo ends, Z™ hasoneend for » > 1, and
afree group on two or more generators has infinitely many ends, since its Cayley graph
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is an infinitely branching tree. For a hyperbolic group it is known that the set of ends
coincides with the set of components of the boundary of the group.

Stallings showed that a finitely generated group can have only 0 (if the group is
finite), 1, 2, or infinitely many ends. Moreover, if 2 ends then the group is virtualy
infinite cyclic and if infinitely many then the group can be “ split" aong afinite subgroup,
that is, it is an amalgamated free product or HNN extension amalgamated along afinite
subgroup. Inthelatter case of “decomposing & along afinitesubgroup,” one might try to
iterate the decomposition if the component groups that are being amalgamated still have
infinitely many ends. Work of Dunwoody [Du] shows that for afinitely presented group
thisiteration eventually ends. One codes the result in what is called a“ graph of groups.”
Thisis afinite graph with groups assigned to vertices of the graph and subgroups of the
vertex groups assigned to adjacent edges of the graph as a scheme for describing how to
repeatedly amalgamate the vertex groups along the edge groups using amalgamated free
products or HNN extensions. In our case all the edge groups are finite and the vertex
groups each have at most one end, since they cannot be further decomposed. This is,
as it were, the first stage of JSJ decomposition, and leaves us with one-ended groups to
decompose.

We now restrict to one-ended hyperbolic groups. In this case JSJ decomposition
concerns splitting aong virtually infinite cyclic subgroups. The main question is when
such splittings exist. We have:

Theorem (Paulin and Rips). If G isaoneended hyperbolic group with |Out(G)| = oo
then G splitsalong a virtually infinite cyclic group.

By Out(G) we mean the outer automorphism group: the quotient of Awt(G) by the
group Inn(G) of inner automorphisms, that is automorphisms induced by conjugation
by a group element.

Theorem (Swarup and Scott, Bowditch). If G isa hyperbolic group with one end and
H isavirtually infinite cyclic subgroup with the relative number of ends e(G, H) > 2
then G splitsalong some virtually infinite cyclic subgroup (except for somevirtual surface

groups).

Swarup and Scott proved the torsion free case. Bowditch’'s proof is very different
and uses the boundary. It also shows that the existence of such a splitting is a geometric
property, i.e., invariant under quasi-isometry.

The number of relative ends is given by taking a connected space X on which G
actsfreely and cocompactly as before and counting theendsof X/H. One must exclude
virtual surface groups in the above theorem, since they include triangle groups which do
not split despite having cyclic subgroupswith e(G, H) = 2.

Rips and Sela have shown that the JSJ splittings are unique up to an appropriate
equivalence relation in special cases.
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5.1 Regular languages, finitestateautomata, and automatic structures

A finite state automaton M over an alphabet A is a finite directed, labeled graph
equipped with abase vertex and a set of preferred vertices or “accept vertices” The edges
of M arelabeled by lettersof A U {e}, where e isan additional symbol that stands for
“empty”. A finite state automaton 1/ definesalanguage L(M) C A*. L(M) isthe set
of words labelling pathsin M starting from the base vertex of M and ending at accept
verticesof M. For example, the language defined by the following finite state automaton
is{a™b™ :n,m > 0}.

@ base vertex
all vertices are accept vertices

€

A language is aregular language if it isthe language of some finite state automaton.
One also speaks of the language accepted by the finite state automaton.

We say the finite state automaton M is deterministic if no e-edges occur and each
vertex of M has exactly one edge emanating from it for each element of A.

A finite state automaton is a model of a Ssmple computing device. Thisis best seen
in the deterministic case. A deterministic finite state automaton can be written as a 5-
tuple. M = (A, S, 7,s0,A4), where A isthealphabet, S isthe set of vertices, or states,
7: 5 x A — S isthetrangtion function given by the edgesof M, s, iSsthe base vertex
or start stateand A C S isthe set of preferred vertices or accept states.

Weimaginethat M performscomputationson wordsto determinewhether or not they
liein L(M). Giventheword w = «; ... a;, the computation proceeds as follows: M
dtartsin thestate s(0) = sg and reads ;. Thiscausesit to enter state s(1) = 7(so, aq).
It proceeds in this way reading the letters of «w and changing states according to the
formula s(j) = 7(s(j — 1),a;). Itconcludesthat w € L(M) if and only if s(k) € A.

There are many characterizations known for regular languages. The following theo-
rem, which gives some of them, is a worthwhile exercise. First a definition that we will
return to later. We define the cone of aword w with respect to alanguage L. Itisthe set

Cw(L) :={ve A" :wv e L}.

Theorem/Exercise. The following are equivalent for a language L C A*.

i). L isaregular language (i.e., accepted by a finite state automaton);

ii). There are only finitely many different cones C,,(L) as w runsthrough A*;
iii). L isaccepted by some deterministic finite state automaton.

(Hint: to show ii) = iii) use the set of cones as the states of thefinite state automaton.)
O

Another standard way to characterize regular languages is in terms of closure prop-
erties. We will not discuss this characterization, but it is a good exercise to prove the
closure properties.
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Theorem. If Ly,L, C A* areregular languages then so are: Ly U Ly, Ly N Lo,
LyLy :={wywy :wy € Ly,we € Ly}, A*—Ly, LT :={w:3dIn > 0and wy,...,w, €
Ly withw = wy ... w,}. O

In addition to using finite state automaton to examine single words w € A*, we will
need to use them to examine pairs (w,w’) € A* x A*. In order to do this, we use a
technical trick: We form the padded product alphabet

A2 = (A x A shUdsE < A4)

where $ is a symbol not in A. We then embed A* x A* into (A*)* by writing
(al...a]‘,bl...bk) as

(al,bl) Ce (Clj,b]‘), |f k= j,

(al,bl) e (a],b])($,b]+1) ce ($,bk>, if ] < k, and as

(al,bl) e (ak,bk)(ak+1, $) ce (a]‘, $) if ] > k.
When we speak of asubset of A* x A* being the language of afinite state automaton we
mean it with respect to the padded product a phabet as above. A finite state automaton for
such a language is often called a (synchronous) two-tape finite state automaton, since
oneimaginesit being fed the two input words on two separate “input tapes.” If we extend
the alphabet to include also pairs (a, €) and (e, a), where e denotes the empty word, one
obtains what is called an asynchronous two-tape automaton, since the automaton can
read aletter on only one tape at atime and thus read the two “tapes’ asynchronoudly.

Another useful closure property of regular languages (again an exercise to prove) is.

Proposition. If L ¢ A* x A* isthe language of a (possibly asynchronous) two-tape
automaton, then its projection onto the first factor {w : Jv (w,v) € L} isaregular
language. O

We now give the original automaton-theoretic definition of an automatic structure
for G. The characterization of the first theorem of §5.2 gives a more useful working
definition and is often used nowadays.

An automatic structure for G consists of the following:

1) Afiniteset G together withamap § — G. We writethismap ¢ — g and extend it
to §* asamonoid homomorphism.

2) Aregularlanguage L C G* sothat L = G.

3) A synchronous two-tape automaton M, so that

L(Mo) = {(w,w') € L x L|w=w'}.
4) For each a € § asynchronous two-tape automaton M, so that
LM,) ={(w,w") €L xL|w=uwa}.

Such a structure fulfils our desire to build the Cayley graph “on the cheap”. The
language L gives us names for the vertices of I'g, and since it isregular, it is cheap to
determine when we have such a name. M, cheaply determines when two names name
the same vertex, and {M, } cheaply determineswhen two such names name an edge. All
this can be made even cheaper by proving:
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Theorem. Any automatic structure L for G contains a sub-language which is an auto-
matic structure which bijectsto G.

For aproof of thisand other basics of automatic structuressee[ECHL PT] or [BGSS].

5.2 Fellow traveler property

Thereis a geometric condition which tells us when aregular language which surjects to
the group is an automatic structure. We say that L has the fellow traveler property if
thereexists A such that for any pair of words w,w’ € L sothat w and w’ end a most
an edge apart, d(w(t),w’(t)) < K foral ¢ € [0, 00).

Theorem. Suppose L isaregular language that surjectsto G. Then L isan automatic
structure if and only if L hasthe fellow traveler property.

Proof. We first show that an automatic structure has the fellow-traveler property. This
uses the following simple but basic lemma about regular languages.

Lemma. Let L C G* be aregular language. Then there exists a bound s such that if
w isan initial segment of an L-word, that is, there existsa v with wv € L, then there
exists such a v of length at most s.

Proof. Let s be the number of states in an automaton for L. When we feed w to the
automaton, the fact that it can be extended to an L-word means it ends at a state from
which an accept state can be reached. This accept state can then clearly be reached in at
most s steps (infact s — 1 suffices). O

Applying this lemma to the language accepted by the comparator automaton shows
that apair of words being compared are always at most s stepsaway frombeing 1 letter
apart, o their values are at most 2s + 1 apart, proving the fellow traveler property.

Thefact that thefellow-travel er property impliesthe existence of comparator automata
follows easily from the following proposition, and is left to the reader. O

Proposition. Let G be a group with finite generating set §. Then for any K > 0 and
any g € GG thelanguages

Mg = {(w,w") € §* x §* : wand v’ K-fellow-travel}
Mk(g9) = {(w,w') € Mg : w' = wg}

are regular languages (actually, to be precise, we must use the corresponding padded
languages, as described above).

Proof. Denote ¢(¢) = w(t)~'w’(¢) for each ¢. Note that if we know ¢(¢) and know
the next letters « and b of w and w’ respectively then we can compute ¢(¢ + 1), since
gt +1) = (w(t)a) tw'(t)b = a~1g(t)b. Thewords w and w’ fellow-travel if and
onlyif ¢(¢t) € B(K) foral ¢. We can thus build afinite state automaton to recognise the
languages My and My (g) by using theball B(L') as set of states plus an additional
“fail state” and letting the («, b)-edgefromstate ¢ € B(K) leadto a~' gb if thiselement
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isin B(I) and to thefail state otherwise. All edges from the fail state lead back to the
fail state and the reader can easily work out what the edges labelled by («,$) and ($,)
should do, where $ isthe pad character. Start state is 1 and accept state is ¢ for the
language My (g) (if ¢ € B(K)) andisthewholeof B(K) for thelanguage My . [

5.3 Quadratic isoperimetric equality and quadratic time word
problem

From the characterization of automatic structuresby fellow-travel er property one deduces:

Corollary. If L isanautomatic structure which bijectsto G, thenthereare A and ¢ so
that L consistsof (A, €)-quasi-geodesics.

With alittle more work one has

Theorem. Suppose L is an automatic structure which bijectsto G. Then there is an
algorithm which takes as input the letter « € § and w € L and finds the word in L
representing wa This is accomplished in at most & len(w) steps for some & that is
independent of w.

tree of candidates for w’

Aswe walk theword w through the comparator machine for « we produce atree of
candidates for w’. Since w’(t) isaways within distance K of w(t) at each stage there
are at most |B(L')| candidates for w’(t) where B(k) isthe ball of radius K. Since
L bijectsto G, two different candidates for «’ that have reached the same value w’()
must have reached different states of the comparator automaton. Thus the number of
candidates for w’ at time ¢ isat most |B(K)||S|, where S is the set of states of the
comparator automaton. Thus the tree of possibilities remains of bounded width. When
we reach the end of w the comparator machine declares the winning w’. O

From these and the following picture we deduce

Theorem. If G isautomatic, then

1) G isfinitely presented.

2) G hasat most quadratic isoperimetric inequality.
3) G hasquadratic time word problem.
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w(i)

5.4 Closure properties

Theorem. The set of automatic groups is closed under the following:
i) Free products.
i) Direct products.
iii) Freefactors.
iv) Finiteindex subgroups.
V) Finiteindex supergroups.
vi) HNN extensions and free products with amalgamation over finite subgroups.
The set of bi-automatic groups (see below) is closed under all the above except
possibly finite index supergroups and additionally is closed under central quotients and
direct factors.

Again, we direct the reader to [BGSS] and [ECHLPT]. The result on biautomatic
groups isdue to Lee Mosher, [M02].

As we shall see below, the sets of automatic, biautomatic, hyperbolic, groups are
closed under passing to “rational” subgroups.

5.5 Famous classes of automatic groups.

Theorem. Automatic groups include the following:

1) Hyperbolic groups including: free groups, finite groups, most small cancellation
groups, fundamental groups of closed negatively curved manifolds and other neg-
atively curved spaces [ECHLPT]

i) Small cancellation groups [GS1].

iii) Fundamental groups of three manifolds which satisfy Thurston’s geometrization
conjecture, except for those containing a nil or solv manifold as a connected sum
component [S2], [ECHLPT].

iv) Coxeter groups[BH].

v) Mapping class groups [Mo1].

vi) Braid groups and more generally, Artin groups of finite type [Ch].

vii) Central extensions of hyperbolic groups [NR].

vii) Many amalgams of hyperbolic groups along rational subgroups, [BGSS] and
[S1].

iX) Many groups that act on affine buildings [CS].
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Infacti), iii), vi) and vii) are known to be bi-automatic (for definition of bi-automatic
see below). We will not define the various classes of the above theorem. Some will be
described in other lectures of this workshop. Suffice it to say that a lot of interesting
groups are automatic.

5.6 Conetypesand falsification by fellow-traveler

Regular languages are closely related to Cannon’s notion of conetypes. Wewill consider
pathsin the Cayley graph I's(G). Edge paths are given by translates of words. We will
need to consider paths which are not necessarily edge paths. In fact, it will suffice to
consider paths which begin at vertices and end either at vertices or midpoints of edges,
and we may assume our paths are parametrized by arc length.

We say apath p isoutboundif d(1,p(t)) isasdtrictly increasing function of ¢. For
agive g € G, theconeat ¢, denoted C'(g) isthe set of all outbound paths starting at
g. Thusif (g,a,¢’) isanedgewith len(¢’) = len(g) + 1, then C'(g) containsthe edge
(g9,a,¢"). If, however (g,a,¢") isan edgewith len(¢’) = len(g), then C’(g) does not
contain the edge (g, a, ¢'), but it does contain the path consisting of the first half of that
edge. We define the cone type of ¢, denoted C'(g) tobe ¢=1C"(g).

Wesay I'g(G) hasthefalsfication by fellow traveler property if thereis a constant
K sothatif w € §* isnot geodesic, thenthereis v’ € §* so that
o W= IF/,

e len(w') < len(w), and
e w and w’, K-fellow travel, that is d(w(t),w’(t)) < K foral ¢.

Theorem. If I's(G) has the falsification by fellow traveler property, then I'(G) has
finitely many cone types.

Proof. Suppose K isthe constant for the falsification by fellow traveler property. Given
g € G we define afunction f, on B(K) by f,(h) = d(1,gh) —d(1,g), that isthe
relativedistanceof gh from 1 comparedto that of ¢. Thefalsification by fellow traveler
property impliesthat apath w from ¢ isoutboundif and only if thereisno path w’ froma
point gk totheendpoint g with h € B(K') and len(w’)+d(1, gh) < len(w)+d(1,g).
This inequality can be written len(w’) < len(w) — f,(kh), so it follows that the cone
type at ¢ isdetermined by the function f,. Since there can only be finitely many such
functions (note that |f,| isbounded by ") thereare only finitely many cone types. L1

Using the first theorem of section 5.1 we deduce:

Theorem. If I'q(G) has the falsification by fellow traveler property, then the set of
geodesicsin §* isaregular language.

Proof. The language of geodesics will have finitely many cones in the sense discussed
earlier. =

The above results have their rootsin [C1] and can beread in [NS2].
Because of the issue of half-edgesin cone types, cone types are more sensitive objects
than the “language cones’ described earlier. Thus the converse to “finitely many cone
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types implies language of geodesics isregular” is not known though it is close to being
true. With the proper definitions one has

Theorem. Suppose the language of geodesics in the barycentric subdivision of I'g(G)
isregular. Then I'q(G) hasfinitely many cone types.

or aternately,

Theorem. Suppose I'g(G) hasno edges whose endpoints are equidistant from the iden-
tity. Then I's(G) hasfinitely many cone typesif and only if the language of geodesicsin
G* isregular.

5.7 Bi-automaticity

We have seen that a group is automatic if there is a regular norma foom L ¢ §* and
finite state automata are capable of discovering right multiplication. That is, for each
a € G thereis afinite state automaton M, which discovers {w,w’ € L? | w' = wa}.
There is an important subclass of automatic groups, namely those possessing automatic
structuresinwhich left multiplication can a so bediscovered by finitestate automata. Such
groups are caled bi-automatic. Specifically, an automatic structure is a bi-automatic
structure if for each a € G there is a finite state automaton M, which discovers
{w,w" € L* | w' = aw}. Another way of saying thisis that both the language L and
the language L~ should be automatic structures.
One can also characterize bi-automaticity in terms of fellow-travelling:

Theorem. If G isafinite generating set for G and L C §* aregular language which
surjects to G then L is a bi-automatic structure if it possesses the following fellow
traveler property: Thereisa constant K so that if w and w’ are L-words beginning
and ending at most distance 1 apart in I' (s0 aw = w'a’ with a,a’ € §) then
d(aw(t),w'(t)) < K for all t. (Recall that the path @w is the path labelled by w
starting at a.)

Theorem (Hyperbolic groups are geodesically biautomatic). If G is a hyperbolic
group and G is any generating set then the language L of geodesic words in G isa
biautomatic structure on G.

Proof. The fellow-traveler property for geodesics is immediate from the definition of
hyperbolic group. The fasification by fellow traveler property then follows. given a
non-geodesic word, replace the shortest non-geodesic initial segment of it by a geodesic
to get a shorter word which fellow travels it. By the results above, it follows that the
language L of geodesicsis aregular language. It isthus an automatic structure, and in
fact biautomaticsince L = L. O

Thefollowing is an open problem.

Problem. Isevery automatic group biautomatic?
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It is certainly not true that every automatic structure is biautomatic, but it could be
true that if a group has some automatic structure then some automatic structure on the
group is biautomatic.

The above problem would be answered in the negative if one could find an automatic
group with unsolvable conjugacy problem.

Theorem [GS]. If G isbi-automatic then G has solvable conjugacy problem.

Proof. One version of the proof relies on two-tape automata. Suppose that we are given
two elements ¢ and ¢’. We consider the set L(g,¢’) of al possible pairs of normal
form words, w and w’ sothat g = w’g. Now biautomaticity ensures that all such
pairs of paths fellow travel with fellow traveler constant § = K max{len(g),len(g’)}.
In particular, we can use the same methods that we used in §5.2 to give an explicit
congtruction of afinite state automaton M(g, ¢') which discoversthe language L(g, ¢').
This automaton has size at most 3 = |B(d)| + 1. Noticethat ¢ and ¢’ are conjugate if
and only if thereis somepair (w,w) in L(g,¢"). Thatis, g and ¢’ are conjugateif and
onlyif L(g,¢') N A # () where A denotesthediagona in §* x §*. Now A isclearly
aregular language, so the intersection L(g,¢’) N A alsois. Moreover, it is easy to see
that 3 isalso abound on the size of an automaton for L(g,¢’) N A. So to determine if
L(g,9") N A isempty or not we need only check words of length at most (3. O

Itisworth noting that the above proof actually showsthat theset {w € L : v~ 1giwv =
g'} isaregular sublanguage of L. Thisisan important fact that we will return to in
section 7.

5.8 Asynchronous automaticity

We say two paths w and ' asynchronoudy K -fellow-travel if they can be made
to I -fellow-travel by reparameterizing them; that is, there exist monotonic surjective
reparameterizations ¢ — ¢’ and ¢t — t" of [0,00) such that d(w(t'),w(t")) < K for
al ¢.

Recall that an automatic structure on G can be described as a regular normal form
L on the group with the (synchronous) K -fellow-traveler property for some &. One
definition of asynchronous automatic structure is aregular normal form with the asyn-
chronous fellow traveler property. Thereis also a machine-theoretic definition by using
asynchronous two-tape automata as comparator automata. These two definitions are not
quite equivalent but are asgood as equivalent: they are equivalent for finite-to-onenormal
forms, and one can always find a sublanguage of an asynchronous automatic structure
(using either definition) which is not just afinite to one asynchronous automatic structure
but even a bijective one.

Asynchronous automatic structures are generally much weaker than automatic struc-
tures. For example, wehavealready seenthat automaticity impliesquadraticisoperimetric
inequality. For asynchronous automaticity we only have:

Theorem. If G hasanasynchronousautomatic structurethen it hasexponentially bounded
isoperimetric function.
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The Baumdag-Solitar groups (x,y : y~'zPy = %) with p, ¢ positive integers are
asynchronoudly automatic groups which have exponential isoperimetric functions when
p # q ([BGSS]).

6 Equivalence of automatic structures.

Let L and L’ be two automatic structures on , using generating sets § and &’

respectively. Thenwemay consider LU L’ asalanguage ontheaphabet GUSG'. We say

L isequivalentto L’ if L U L’ isan asynchronous automatic structure. Equivalently,

o thereisa K such that every L-word K -fellow-travels an L’-word with the same
value and vice versa

This definition is useful also for asynchronoudly automatic structures, bi-automatic
structures, and even for rational structures (arational structureon G issmply aregular
normal form — that isaregular language L C §* which surjectsto G, where G isa
finite generating set). In the case of rational structures we use the definition of e.

Thisturnsout to be the right definition of equivalence to make automatic (and biauto-
matic and asynchronously automatic) structures independent of generating set — to any
such structure on GG with respect to one finite generating set one can find an equivalent
one with respect to any other finite generating set. The proof of thisis not hard, though it
needs alittle bit of carein the synchronous case.

We can therefore avoid reference to the generating set and denote by 2((G) the set of
automatic structureson G mod equivalenceand B2((G) theset of bi-automatic structures
on G mod equivalence. Abuse of notation lets us consider B2((G) asasubset of Q(G).
We will use a subscript “async” for the asynchronous versions of these. Here is an
example result.

Theorem. If G ishyperbolic then 2((G) consists of a single point.

Proof. We may assume our automatic structure is finite to one in which case we have
pointed out earlier that it consists of quasi-geodesics and that quasi-geodesics fellow-
travel geodesics in a hyperbolic group. Thus the automatic structure is equivalent to the
geodesic automatic structure. O

Much of the theory of “rational subgroups’ isbest stated in terms of this equivalence
relation. Wewill return to the following theorem in §7, but it isworth stating here. Given
an automatic structure L on G asubgroup H isrationa if {w € L : @ € H} isa
regular sublanguage of L.

Theorem. i) Suppose H isasubgroup on G and L and L’ are automatic structures
on GG. Then H is L-rational if and only if H is L’ rational. If H is L-rational, then
[L] induces a unique automatic structure up to equivalence on H. Consequently,

i) Suppose H is a subgroup of G which is rational in every automatic (resp. bi-
automatic) structure on G. Then there isa map A(G) — A(H) (resp. BA(G) —
B2A(H)).
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iii) Suppose H isfiniteindexin G. Then, up to equivalence, every automatic structure
on H induces an automatic structure on . Combining this with ii) gives a bijection
between ((H) and A(G).

iv)The above are also valid in the asynchronous case.

Completeinformationabout A(G) or Aqsync(G) isusually hard to come by, although
they have been determined for some groups (see e.g., [NS1]). For example, for a
hyperbolic group we have already proved that al automatic structures are equivalent
to each other. This is aso true of asynchronous automatic structures for free groups
and surface groups (in the surface case this is a result of Brady), but probably not for
fundamental groups of hyperbolic 3-manifolds. In fact, if some cover of the hyperbolic
3-manifold fibersover the circle— and Thurston has conjectured that this always happens
— then one can construct enormous numbers of inequivalent asynchronously automatic
structuresonitsfundamental group. It would thereforebevery excitingto find ahyperbolic
3-manifold group with few such structuresl — an open problem.

Here is one theorem from [NS1].

Theorem. i) Let G bevirtually Z". Then Q(G) naturally bijects to the set of ordered
rational linear triangulations of S™!,

ii) Let [L7] be the class corresponding to triangulation 7'. Then there is a bi-
automatic structure in [Lp] if and only if T isinvariant under the action of the finite
group G/Z" on T.

iii) Let H be a subgroup of G. Then H is [Ly]-rational if and only if the great
subsphere corresponding to H isa sub-complex of T'.

The equivalence relation on automatic structures leads naturally to a version of bi-
automaticity. Thereisan action of G on 2((G). One way to describe this action is that
given an element ¢ and alanguage [L] we define the class ¢[L] to be those automatic
structures which fellow travel the collection of trandated paths ¢ L. In fact, we could
smply pick aword « for ¢ and take ¢g[L] tobe [uL]. (Thelanguage « L isformed by
prefixing v« toeachword of L.) Anautomaticstructure L is*asynchronous-synchronous
bi-automatic” if and only if [L] isfixed under the action of G. We leave the definition
of “asynchronous-synchronous bi-automatic" as an exercise. Although this property is
dightly less than full bi-automaticity, it is sufficient to solve the conjugacy problem and
do the other nice thingsthat follow from bi-automaticity that are discussed below, but this
takes some work to prove.

7.1 Rational and quasiconvex subsets

Thetheory of rational subgroups originated with Gersten and Short [GS].

Let L bearationa structureon G (recall that thisjust means L isaregular language
that surjectsto G — no fellow traveler property need be assumed — however our real
interest is automatic structures). A subset S C G is L-rational if {w € L:w € S} is
aregular language. A subset S C GG is L-quasiconvex if thereisabound K such that
if we L satisfies w € S then w(¢) isnever distance more than & from S.
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Proposition. 1. Every L-rational subset is L-quasiconvex. The converse holds for sub-
groups.

2. Let L and L’ beequivalent rational structuresfor G. Then S C G is L-rational
(resp. L-quasiconvex) if and only if itis L’-rational (resp. L'-quasiconvex).

Proof First part. Thequasiconvexity of arational subset followsquickly fromthelemma
in§5.2.

Now suppose S is aquasiconvex subgroup. Thenif w = ay...a, € L evauates
into S wecanfind 1 = go,91,...,9n-1,9n» = 1 € B(I{) suchthat a; .- a,¢; € S for
each j. Since @ = [[ g; 'a;g: weseethattheset A := {y~lag € S: ¢ € B(K) and
a € G} generates S. Thisisclearly afiniteset, so .S isfinitely generated.

We now consider {(w,w’) : w € L,w" € A*,w and w' K -fellow travel }. By the
method of §5.2 and the fact that intersection of regular languages is regular, thisis the
language of an asynchronous two-tape automaton. Thus the image of projection onto the
first factor isregular. But thisis {w € L : w € S}, so S isrational.

Second part. For quasiconvexity the proposition is trivial. Assume S is L-rationdl,
O N ={welL:wée S}t isaregular language. Let N/ = {w € L' : w €
S}. By the argument of §5.2 there is an asynchronous two-tape automaton J° whose
language is {(u,v) € §* x (§')* : w = v, v and v asynchronously K -fellow travel
}. Since intersection of regular languages is regular, {(u,v) € N x L' : w = 7, u
and v asynchronoudy K -fellow travel } isa non-deterministic asynchronous two-tape
language. Its projection onto the second factor is N’, and is hence regular asrequired. [

7.2 Rational subgroupsinherit automatic or hyperbolic structures

The fact that a rational subgroup of an automatic group inherits an automatic structure
has aready been said in §6. It is now easy to prove. We just look at the two-tape
language described in the above “Proof First part” of §7.1 and project it onto its second
factor instead of its first. The same proof applies to asynchronously automatic and to
biautomatic. O

The analogous result for hyperbolicity is aso true and is worth further discussion.
For ahyperbolic group the rationality concept for subgroups and subsets does not depend
on the choice of automatic structure, since there is just the one automatic structure up
to equivalence. For a subgroup H, rationdlity is, as we have just seen, equivalent to
guasiconvexity with respect to geodesics. It follows quite easily that H -geodesics are
guasi-geodesic in G and therefore fellow travel the corresponding (G-geodesics. The
thin triangles condition for H now follows, so we have shown:

Theorem. Rational subgroups of hyperbolic groups are hyperbolic. O

It is not true that any hyperbolic subgroup of a hyperbolic group isrational. We will
return to thisin amoment. However:

Exercise. Any finitely generated subgroup of afinitely generated free group isrational.
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Since it is clear that intersection of two rational subgroups is rationa (since the
intersection of two regular languages is regular), we obtain the corollary:

Corollary. If U and V arefinitely generated subgroups of thefreegroup F' then U NV
isalso finitely generated. O

Given where this course is being held, it is worth formulating now the

Hanna Neumann Conjecture. If v and v and ¢ aretheranksof U/, V and U NV
aboveand u,v > 2, thent —1 < (u —1)(v —1).

With an extra factor 2 on the right this inequality was proven by Hanna Neumann
about 40 years ago. Getting rid of the factor of 2 has proved remarkably difficult,
although some partial results are known.

Rationality of subgroups seems to be the “right" property in many ways. When
studying fundamental groups of hyperbolic manifolds, there isafundamentally important
geometric property called “geometric finiteness." Roughly, it refers to the existence of a
finitesided polyhedral fundamental domain. By Milnor’s Theorem (§1.2) thefundamental
group of a compact hyperbolic manifold is a hyperbolic group. Swarup showed that a
subgroup of such agroup isarational subgroup if and only if it isgeometrically finite. In
his 1995 thesis Lawrence Reeves has proved the analogous result if the manifold isonly
of finite volume rather than compact: in this caseitsfundamental group isnot hyperbolic,
but a subgroup is geometrically finite if and only if it is rational for some biautomatic
structure on the group.

If acompact hyperbolic 3-manifold group G = =y M has a subgroup isomorphic to
a surface group, then that surface group is non-rational if and only if, after replacing our
groups by subgroups of finite index if necessary (i.e., going to afinite cover of A ), that
surface group is the fundamental group of the fiber of afibration of A/. Thurston has
conjectured that such fibered covers of M always exist. Equivaently, every hyperbolic
3-manifold group has non-rational surface subgroups.

7.3 Subgroups of bi-automatic groups

Thereis abeautiful theory of rational and other subgroups in bi-automatic groups due to
Gersten and Short [GS]. We have already proved the main tool of this theory in §5.7:
we saw that if ¢,¢' are elements of a biautomatic group G then {h : h=lgh = ¢'}
is arational subset of G. Taking ¢ = ¢’ this tells us that the centralizer subgroup
Za(g) :=={h € G: gh = hg} of an element of G isaways arationa subgroup. Now
the centralizer of afinitely generated subgroup of G istheintersection of the centralizers
of a set of generators of the subgroup, so we have proved:

Theorem. If H is a finitely generated subgroup of a biautomatic group G then the
centralizer Z(H) isrational (and hence biautomatic). ]

Applying thisto H = GG we see that the centre of a biautomatic group is a rational
subgroup. Since the centre of the centralizer of an abelian subgroup H is an abelian
group containing H, it follows that:
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Lemma. Any finitely generated abelian subgroup of a biautomatic group is contained in
arational abelian subgroup. O

Now let G be a group with finite generating set §. We say an element ¢ € G has
positive trandation length if liminf, . ¢(¢™)/n > 0. We can also speak of positive
trandlation length with respect to an automatic structure L, using word-length of Z-words
in place of word metric. However, since L-words are quasi-geodesic, thisgives the same
concept of positive trandation length. Inparticular, it followsthat an element of arational
subgroup H of an automatic group G has positive trandation lengthin H if and only if
itdoessoin G. The above lemmanow easily implies:

Theorem. Any element of infinite order in a biautomatic group has positive trandation
length. O

Thisyields strong restrictions on what subgroups biautomatic groups (and hence also
hyperbolic groups) can have. For example, most Baumd ag-Solitar groups are ruled out
as subgroups and also:

Corollary. A nilpotent or polycyclic subgroup of a biautomatic group must be virtually
abelian.

The proof isbasicly that if not, one could find an element of infinite order with zero
trandation length in the subgroup, and hence certainly with zero trandation length in the

group.

8 Almost Convexity

Almost convexity is a geometric property due to Cannon [C2] which gives a highly
efficient way to build the Cayley graph.

Asusual, wetake I' = I'g(G) to be the Cayley graph of G, andlet B(n) = {x €
I'|d(l,z) <n}and S(n) ={x €T |d(1,z) =n}. Wearemost specifically thinking
of " asahbonafide metric space here.

We say I' is almost convex if there is a constant & so that if ¢,¢' € B(n) with
d(g,g') <2 thenthereisapath p inside B(n) runningfrom ¢ to ¢’ with len(p) < K.

We say I' is almost convex (k) if thereisaconstant (k) sothat if g,¢9" € B(n)
with d(g,¢') < k then there is a path p insde B(n) running from ¢ to ¢’ with
len(p) < K (k).

Thus T' isalmost convex if itisalmost convex (2). Thereason for thisisthefollowing
theorem which isa straight forward exercise in the definition.

Theorem. If " isalmost convex(2) then I' isalmost convex (k) for all k.
Let uslook at some consequences.

Theorem. Suppose I' is almost convex. Then G is finitely presented and has at worst
exponential isoperimetric inequality.
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In fact, we shall seethat G can be presented as (G | R) where
R={we§" |w=1and len(w) < K + 2}
where K istheamost convexity constant of I

Proof. Suppose w isaword evaluating to 1 in G. We consider w as a closed path
based at 1, andlet n beminimal sothat w liesin B(n). Write w = wp = ujvy ... ugvy
wherethe v, aretheportionsof w escaping B(n—1). (Sounless n = 1, u; isempty!)
Now observe that each «; consists of either a single edge whose midpoint is at distance
n— 3 fromtheidentity, or apair of edges whose common vertex is at distance n fromthe
identity. For if two consecutive vertices of u; are outside B(n — 1), then the midpoint
of their edge is outside B(n). Hence we can replace each «; with a path p; giving
w=1w; = p1vy ...prvr SOthat

e each p; haslength at most KA

e w; = wgy and

e w; liesentirely inside B(n —1).

Continuing in this way produces w,, lying entirely inside B(0), that is, w,, isthe
empty word.

Now each step in this process corresponds to the application of relators of the form
u; 'p; and each of these has length at most K + 2. You must now check that this
corresponds to the creation of a Van Kampen diagram for w. Furthermore, in going from
w; t0 w;4+1 weused at most len(w;) relators and increased length by at most afactor of
K. The exponential isoperimetric inequality now follows. O

Thereisahighly efficient algorithm for building an almost convex Cayley graph.

Theorem. If I' isalmost convex then there isan algorithmwhich produces the edges and
verticesof I" at a constant rate.

In some sense, this theorem is only moraly true. If you wish to carry out such an
algorithminahard core Turing machinefashion, you must keep lists of edgesand vertices.
Asthelengths of these lists grow and the lengths of the names of the things on these lists
grow, you will spend worse than linear time ssimple traversing your list. We should not
concentrate here on these hard core machine-theoretic impedimentia

Proof. We seek to build B(n). We can certainly do thisfor n = 0! Suppose now that
we have built B(n — 1), and that for convenience, we have kept track of S(n —1). Now
each vertex of I' has emanating from it one edge from each element of §. For each
element of B(n —2) we have already found all its edges. For each g € S(n —1) let E,
be the set of edges of ¢ notin B(rn —1). Weforma*“proposed B(n)” by appending to
B(n — 1) themissing edges E(g) foreach g € S(n —1). Call thisobject X (n). Now
itisclear that B(n) isaquotient of X (n). Thatis, to find B(n), we must determine
for each pair of edges e and ¢’ in X(n) — S(n — 1) whether
e ¢ and ¢’ aretheinverse edges(and thusboth have endpointsalready foundin S(n—1)
or
e ¢ and ¢ have acommon endpoint in S(n). After determining this and making
appropriate identificationson X (n) we have found B(n).
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So suppose ¢ and ¢’ emanate respectively from ¢ and ¢’. Then almost convexity
ensures that if either of the two above situations occur then there is a short path p from
g to ¢’ in B(n — 1) (which we have aready found) which suffices to determine this
fact. Thus verifying each new vertex of B(n) requiresonly afixed amount of checking
in B(n —1).

It turns out that almost convexity is not a group property.

Theorem (Thiel) [T]. Let H,,, 1, betheHeisenberg group of dimension 2n + 1:
(a1, . an, b1, ... by, et ag, b = ¢, a;,b;] = 1fori # j, ¢ central).

Thenfor n > 1 therearegenerating sets G,,,41 and G5, for Hy,,q sothat T'g,, . (Hony1)
isalmost convex, but 1“9/2”+1(H2n+1) is not.

Those groups that are almost convex include

hyperbolic groups (in any generating set),

virtually abelian groups (in any generating set),

groups with geodesic automatic structure,

71 (M) where M isaclosed 3-manifold with auniform geometric structure whichis
not solvgeometry Finitely presented groups which are not almost convex in any gener-
ating set include fundamental groups of closed solvegeometry 3-manifolds [CFGT]
and solvable Baumslag-Solitar groups [M S].

Thereis much to be learned about this property.

9 Growth functions and growth rates

Let G be agroup with finite generating set §. We denote by S(n) the set of group
elements at distance n from theidentity and let s(n) = |S(n)|. Thegrowth function of
G with respect to G isthe power series

oo

£ty = 3 s(npen = 3740,

n=0 geG

where ((g) = d(g,1). If thisisthe power series of arational function, one says that G
has rational growth with respect to G. In any case this function has a positive radius of
convergence since s(n) < |G|™.

Theorem. If G has a geodesic automatic structure with respect to G then its growth
with respect to G isrational.

Proof. We can find a bijective geodesi c automatic structure, and then the result isimme-
diate from the following standard resuilt. O

Let L C A* bealanguage. Itsgrowth function isthe power series whose coefficients
are the number of words of length » in the language.

Theorem. The growth of aregular language L isrational.
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Proof. If A isafinite state automaton for L one forms the transition matrix M for A
whose rows and columns are indexed by the states of A and whose entry m;; counts
the number of edges from state : to state ;. Thismatrix is the adjacency matrix for the
underlying graph of A. Noticethat the (z, j)-entry of A/™ countsthe number of paths of
length » from ¢ to j. Thusthe number of words of length » in L is vy M"vs, where vy
istherow vector witha 1 at the start state and 0’selsewhereand v, isthe column vector
with 1’'s at accept states and 0's elsewhere. The growth function is therefore given by
the function vy (32, (tM)*)v,. Thisfunction isrational because it can be rewritten as
v1(I —tM) vy and (I — M)~ will be amatrix whose entries are rational functions
of t (see eg., [C1]). O

By amaodification of this argument one can also show:

Theorem. If I'g(G) hasfinitely many cone types (in particular, if it has the falsification
by fellow traveler property) then G hasrational growth with respect to G.

It isunknown if language of geodesics being regular impliesrational growth, although
the above result isvery closeto this. There exist groups with rational growth with respect
to agiven generating set for which the language of geodesicsis not regular. For example,
virtually abelian groups have rational growth with respect to any finite generating set but
need not have regular language of geodesics.

It is an important open problem whether having rational growth is independent of
finite generating set.

9.2 Growth rate

Another important invariant of afinitely generated group isthe growth rate of the function
s(n), eg., the question of whether it is polynomial or not, and the degree of polynomial
growth if it is polynomial. Its growth cannot be more than exponential, in contrast to
the isoperimetric function. There do however exist groups with growth strictly between
polynomial and exponential; whether they can be finitely presented is till open.

The most important theorem in the areais:

Theorem (Gromov). A finitely generated group has polynomial growth if and only if it
isvirtually nilpotent.

A group is nilpotent if there isa k£ such that Gy is trivial, where Gy = G and
G; = Gi—1/Z(Gi—1). The proof uses a beautiful construction of “asymptotic cone" of
agroup which has had other applications, but which we cannot go into here.
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