Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Séminaire

Uniqueness theorem for discrete Schrödinger equations

Yurii Lyubarskii
Dept. of Mathematical Sciences, NTNU, Norway
https://www.ntnu.edu/employees/yura

Date(s) : 16/03/2015   iCal
10h00 - 11h00

We prove that if a solution of the discrete time-dependent Schrödinger equation with bounded real potential decays fast at two distinct times then the solution is trivial. For the free Shrödinger operator and for operators with compactly supported time-independent potentials a sharp analog of the Hardy uncertainty principle is obtained, using an argument based on the theory of entire functions. Logarithmic convexity of weighted norms is employed in the case of general real-valued time-dependent bounded potentials. In the latter case the result is not optimal.

https://arxiv.org/abs/1505.05398

Catégories


Secured By miniOrange