Combinatorial and dynamical properties of adding machine
Danilo Antonio Caprio
I2M, Aix-Marseille Université
Date(s) : 25/03/2015 iCal
0h00
In this work we define a stochastic adding machine associated to the Fibonacci base and to a probabilities sequence (Pi) i>1. We obtain a Markov chain whose states are the set of nonnegative integers. We study probabilistic properties of this chain, such as transience and recurrence. We also prove that the spectrum associated to this Markov chain is connected to the filled Julia sets for a class of endomorphisms in C 2. Furthermore, we study topological and dynamical properties of a class of endomorphisms of C 2 (or R 2). Precisely, the considered maps are fn(x, y) = (x y + cn, x), where cn 2 C (or cn E R), for all n>0.
Keywords: Adding machine, Markov chains, transition operator, spectrum, Julia sets, fibered Julia sets
*Membres du jury :
– Prof. Dr. Mauduit Christian, Aix-Marseille Université (Directeur de thèse)
– Prof. Dr. Ali Messaoudi, UNESP – São José do Rio Preto, Orientador (co-dir.)
– Prof. Dr. Eduardo Garibaldi, UNICAMP – Campinas
– Prof. Dr. Sylvain Philippe Pierre Bonnot, USP – São Paulo
– Prof. Dr. Paulo Ricardo da Silva, UNESP – São José do Rio Preto
– Prof. Dr. Márcio Ricardo Alves Gouveia, UNESP – São José do Rio Preto
http://repositorio.unesp.br/bitstream/handle/11449/127813/000844070_20170212.pdf
Lien : UNESP
Catégories