Kernel spectral clustering
Date(s) : 27/02/2017 iCal
14h00 - 15h00
We consider the setting of performing spectral clustering in a Hilbert space. We show how spectral clustering, coupled with some preliminary change of representation in a reproducing kernel Hilbert space, can bring down the representation of classes to a low-dimensional space and we propose a new algorithm for spectral clustering that automatically estimates the number of classes.
http://pages.saclay.inria.fr/ilaria.giulini/
Catégories Pas de Catégories