Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Variable selection for mixed data clustering: a model-based approach




Date(s) : 24/04/2017   iCal
15h30 - 16h30

In this talk, we consider two approaches for selecting variables in latent class analysis. The first approach consists in optimizing the BIC with a modified version of the EM algorithm. This approach simultaneously performs both model selection and parameter inference.
The second approach consists in maximizing the MICL, which considers the clustering task, with an algorithm of alternate optimization. This approach performs model selection without requiring the maximum likelihood estimates for model comparison, then parameter inference is done for the unique selected model. Thus, both approaches avoid the computation of the maximum likelihood estimates for each model comparison. Moreover, they also avoid the use of the standard algorithms for variable selection which are often suboptimal (e.g. stepwise method) and computationally expensive. The case of data with missing values is also discussed. The interest of both proposed criteria is shown on a medical data sets describing 1300
patients by 160000 variables.

http://ms.mcmaster.ca/~marbacm/

Catégories Pas de Catégories


Secured By miniOrange