Réseaux ayant beaucoup de vecteurs minimaux
Serge Vladuts
I2M, Aix-Marseille Université
/user/serge.vladuts/
Date(s) : 24/05/2018 iCal
11h00 - 12h00
We construct a sequence of lattices $\{L_{n_i}\subset\mathbb{R}^{n_i}\}$ for $n_i\longrightarrow \infty$, with exponentially large kissing numbers, namely, $\log_2 \tau(L_{n_i})/n_i > 0.0338 – o(1)$. We also show that the maximum lattice kissing number $ \tau^l(n)$ in $n$ dimensions verifies $\lim\inf \log_2\tau^l(n)/n \ge 0.0219$. Before our work the best known bound was quasipolynomial, $\tau^l(n) = \Omega( n^{c\log_2 n})$.
Catégories