Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Séminaire

A knot invariant arising from branched covers of S^4

Alexandra Kjuchukova
University of Pennsylvania
https://www2.math.upenn.edu/~alkju/

Date(s) : 18/03/2019   iCal
14h00 - 15h00

I’ll begin by recalling dihedral branched covers of knots in $S^3$. These are covers associated to Fox colorings of knots diagrams. Then, I will describe an analogous picture for surfaces in $S^4$. The surfaces considered are not smoothly embedded; they admit cone singularities. I will give some examples of dihedral covers between familiar four-manifolds, e.g. $\mathbb{CP}^2\to S^4$, and I will explain how these can be used to define a ribbon obstruction for a class of knots.

http://www.researchgate.net/profile/Alexandra_Kjuchukova

Catégories


Secured By miniOrange