Selberg’s eigenvalue conjecture for moduli spaces of abelian differentials
Michael Magee
Durham University
https://maths.dur.ac.uk/~lcxt26/
Date(s) : 29/03/2019 iCal
11h00 - 12h00
I’ll begin by discussing Selberg’s eigenvalue conjecture, that predicts a uniform spectral gap for the Laplacian on a special family of arithmetic Riemann surfaces.
Selberg’s conjecture can be restated in terms of the Teichmuller dynamics of abelian differentials on a torus. Based on this, Yoccoz made a generalization of Selberg’s conjecture for connected components of strata of abelian differentials on higher genus surfaces.
I will explain how I have proved an approximation to Selberg’s conjecture in higher genus, and highlight some of the interesting ingredients involved, including the recent resolution of a conjecture of Zorich by Avila-Matheus-Yoccoz and Gutierrez-Romo. If I have time, I’ll explain how this all fits into a broader program of automorphic forms on moduli spaces. https://arxiv.org/abs/1609.05500
Catégories