Constant slope, entropy and horseshoes for a map on a tame graph
Jozef Bobok
Czech technical university in Prague (CTU)
http://mat.fsv.cvut.cz/bobok/
Date(s) : 04/06/2019 iCal
11h00 - 12h00
We study continuous countably (strictly) monotone maps defined on a tame graph, i.e., a special Peano continuum for which the set containing branchpoints and endpoints has countable closure. In our investigation we confine ourselves to the countable Markov case. We show a necessary and sufficient condition under which a locally eventually onto, countably Markov map {f} of a tame graph {G} is conjugate to a map {g} of constant slope. In particular, we show that in the case of a Markov map {f} that corresponds to a recurrent transition matrix, the condition is satisfied for constant slope {e}{h}({f}), where {h}({f}) is the topological entropy of {f} . Moreover, we show that in our class the topological entropy {h}({f}) is achievable through horseshoes of the map {f}.
Joint work with Adam Bartoš, Pavel Pyrih, Samuel Roth and Benjamin Vejnar.
https://www.researchgate.net/scientific-contributions/Jozef-Bobok-2134299165
Catégories