Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Groupe de travail Séminaire

Propriété d’indistingabilité en percolation – Sébastien Martineau

Sébastien Martineau
LPSM, Sorbonne Université, Paris
https://www.lpsm.paris/laboratoire/annuaire/smartineau/

Date(s) : 29/11/2019   iCal
14h30 - 15h30

Ergodicity and indistinguishability in percolation theory. https://arxiv.org/abs/1210.1548

This talk explores the link between the ergodicity of the cluster equivalence relation restricted to its infinite locus and the indistinguishability of infinite clusters. It is an important element of the dictionary connecting orbit equivalence and percolation theory. This note starts with a short exposition of some standard material of these theories. Then, the classic correspondence between ergodicity and indistinguishability is presented. Finally, we introduce a notion of strong indistinguishability that corresponds to strong ergodicity, and obtain that this strong indistinguishability holds in the Bernoulli case. We also define an invariant percolation that is not insertion-tolerant, satisfies the Indistinguishability Property and does not satisfy the Strong Indistinguishability Property.

 

Catégories


Secured By miniOrange