Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Groupe de travail

Efroymson’s Approximation Theorem for globally subanalytic functions

Anna Valette
Jagiellonian University, Kraków, Poland
https://apacz.matinf.uj.edu.pl/users/245-anna-valette

Date(s) : 15/04/2021   iCal
14h00 - 15h00

Efroymson’s Approximation Theorem asserts that if f is a continuous semialgebraic mapping on a C^infinity semialgebraic submanifold M of ℝⁿ and if e : M→ℝ is a positive continuous semialgebraic function then there is a C^infinity semialgebraic function g:M→ℝ such that |f-g|<e. The aim of this talk is to give some insights into the proof of generalized Efroymson’s theorem to the globally subanalytic category.

Our framework is however much bigger than this category since our approximation theorems hold on every polynomially bounded o-minimal structure expanding the real field that admits C^infinity cell decomposition. In particular, it applies to quasi-analytic Denjoy-Carleman classes.

Work in collaboration with Guillaume Valette.

https://arxiv.org/abs/1905.05703

 

Catégories


Secured By miniOrange