Renormalized solutions for stochastic $p$-Laplace equations with $L^1$-initial data
Aleksandra Zimmermann
Essen University
https://www.uni-due.de/mathematik/ag_wittbold/zimmermann
Date(s) : 11/10/2022 iCal
11h00 - 12h00
We consider a p-Laplace evolution problem with multiplicative stochastic perturbation on a bounded domain D ⊂ Rd with homogeneous Dirichlet boundary conditions for 1 < p < ∞. The random initial data is merely integrable. Consequently, the key estimates are available with respect to truncations of the solution. We introduce the notion of renormalized solutions for multiplicative stochastic p-Laplace equations with L1-initial data and study existence and uniqueness of solutions in this framework.
Joint work with Niklas Sapountzoglou, University of Duisburg-Essen
Emplacement
I2M Chateau-Gombert - CMI, Salle de Séminaire R164 (1er étage)
Catégories