Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Séminaire

A proof of the Erdős primitive set conjecture

Jared D. Lichtman
Université d'Oxford, Royaume-Uni
https://www.maths.ox.ac.uk/people/jared.lichtman

Date(s) : 01/12/2022   iCal
14h00 - 15h00

A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in 1935 that the sum of 1/(a log a), ranging over a in A, is uniformly bounded over all choices of primitive sets A. In 1988 he asked if this bound is attained for the set of prime numbers. In this talk we describe recent work which answers Erdős’ conjecture in the affirmative. We will also discuss applications to old questions of Erdős, Sárközy, and Szemerédi from the 1960s.

 

Emplacement
I2M Luminy - Ancienne BU, Salle Séminaire2 (RdC)

Catégories

Tags :

Secured By miniOrange