Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Séminaire

On bounds for B_{2}[g] sequences and the Erdos-Turan Conjecture

Javier Pliego-Garcia
Univ. Gênes

Date(s) : 09/04/2024   iCal
11h00

We say that Asubset N is an asymptotic basis of order 2 if for every sufficiently large natural number n then n=a_{1}+a_{2}, a_{1}leq a_{2}, a_{1},a_{2}in A, and denote by r_{A}(n) to the number of such solutions. An old conjecture of Erdos and Turan claims that there is no asymptotic basis A and no fixed ginmathbb{N} with the property that 1leq r_{A}(n)leq g for sufficiently large n. We first show after suitably weakening the preceding requirements in the conjecture that the corresponding statement does not hold. We also provide for ggeq 2 and some sequence Asubset N with the property that r_{A}(m)leq g new lower bounds for the counting function | A cap [1,x] |.

Emplacement
I2M Luminy - TPR2, Salle de Séminaire 304-306 (3ème étage)

Catégories

Tags :

Leave a comment

Secured By miniOrange