LISA – Lipschitz Geometry of Singularities
Project ANR-17-CE40-0023 of the Agence Nationale de la Recherche
Date de début : 1er octobre 2017. Durée : 48 mois.
Membres
Partenaire 1 : Marseille (Institut de Mathématiques de Marseille)
– Anne Pichon, responsable scientifique, coordinatrice
Partenaire 2 : Lille (Laboratoire Paul Painlevé)
– Patrick Popescu-Pampu, coordinateur
Partenaire 3 : Nice (Laboratoire J.A. Dieudonné)
– Adam Parusinski, coordinateur
Événements
– Conférence Géométrie Lipschitz des Singularités, Marseille, La FRUMAM, du 7 au 10 novembre 2017
– Workshop “The annual meeting of LISA”, Paris, 23, 24 et 25 mai 2018
– École Internationale sur les Singularités et la Géométrie Lipschitz, Cuernavaca, Mexique, 11 au 22 juin 2018
– Workshop BIRS, Casa Matematica Oaxaca, Mexique, 21 au 26 octobre 2018.
– Workshop Lipschitz Geometry of Singularities, Marseille, La FRUMAM, du 3 au 6 juin 2019
Publications
Dans chacune de vos publications ou preprints produits dans le cadre du projet, n’oubliez pas d’indiquer la mention :
LISA Project ANR-17-CE40-0023
1 – J.B. Campesato, T. Fukui, K. Kurdyka, A. Parusiński, Arc spaces, motivic measure and Lipschitz geometry of real algebraic sets, Math. Annalen, 374(1), (2019) 211-251. https://arxiv.org/abs/1807.05160
2 – N. Dutertre and N. Grulha (USP-Sao Carlos) : “Global Euler obstruction, global Brasselet numbers and critical points”, Proceedings of the Royal Society of Edinburgh, DOI:10.1017/prm.2019.30, https://arxiv.org/abs/1703.06694
3 – E. Garcia Barroso, P. Gonzalez Perez, P. Popescu-Pampu, The valuative tree is the projective limit of Eggers-Wall trees. RACSAM, appeared online https://doi.org/10.1007/s13398-019-00646-z, https://arxiv.org/abs/1807.02841
4 – E. Garcia Barroso, P. Gonzalez Perez, P. Popescu-Pampu, M. Ruggiero, Ultrametric properties for valuation spaces of normal surface singularities, to appear in Transactions of the American Math. Society. https://arxiv.org/abs/1802.01165
5 – F. Misev, A. Pichon, Lipschitz normal embedding among superisolated singularities, 2018, 17 pages, to appear in International Mathematics Research Notices. https://arxiv.org/abs/1810.10179
6 – W. Neumann, H. Pedersen and A. Pichon, A characterization of Lipschitz normally embedded surface singularities, 2018, 30 pages, to appear in Journal of the London Mathematical Society. https://arxiv.org/abs/1806.11240
7- W. Neumann, H. Pedersen, A. Pichon, Minimal surface singularities are Lipschitz normally embedded, 19 pages, to appear in Journal of the London Mathematical Society. https://arxiv.org/abs/1503.03301
8 – N. Dutertre, “On the topology of non-isolated real singularities”, à paraitre au Journal of Singularities, Proceedings de la conférence de Sao Carlos 2018. https://arxiv.org/abs/1901.06161
9- W. Kucharz, K. Kurdyka, From continuous rational to regulous function, Proc. ICM 2018, Rio de Janeiro, vol. 2, 737–766.
PREPUBLICATIONS soumises pour publication
– A. Parusinski, L. Paunescu, Zariski Equisingularity and Lipschitz Stratification of a
Family of Surface Singularities, 2019, https://arxiv.org/abs/1909.00296
– A. Belotto da Silva, L. Fantini, A. Pichon, Inner geometry of complex surfaces : a valuative approach, 2019, 42 pages, https://arxiv.org/abs/1905.01677.
– A. Belotto da Silva, A. Figalli, A. Parusiński, L. Rifford, Strong Sard Conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3, https://arxiv.org/abs/1810.03347
– A. Bodin, P. Dèbes, S. Najib, The Schinzel hypothesis for polynomials, https://arxiv.org/abs/1902.08155
– A. Bodin, Bilipschitz equivalence of polynomials, https://arxiv.org/abs/1902.01584
– C. McCrory, A. Parusiński, Real intersection homology II : A local duality obstruction, https://arxiv.org/abs/1701.08805
– D. Cutkovsky, H. Mourtada, B. Teissier, On uniqueness of finite extension of monomial valuation and their uniformization.
– F. Delgado, H. Maugendre, Pencils and critical locus on normal surfaces, https://arxiv.org/abs/1601.01647
– N. Dutertre, Vincent G., Gauss-Kronecker Curvature and equisingularity at infinity of definable families, https://arxiv.org/abs/1903.08001
– W. Kucharz, K. Kurdyka, Rational representation of real functions.
– B. Karadeniz, H. Mourtada, C. Plénat and M. Tosun, The embedded Nash problem of binational model of rational triple singularities.
– H. Maugendre, F. Michel, On the growth behaviour of Hironaka quotients, https://arxiv.org/abs/1707.02219
– C. Murolo, D. Trotman, Whitney cellulation of Whitney stratified sets and Goresky’s homology conjecture, preprint, 2019.
– A. Parusiński, A. Rainer, Selections of bounded variation for roots of smooth polynomials, https://arxiv.org/abs/1705.10492
– A. Parusiński, G. Rond, Algebraic varieties are homeomorphic to varieties defined over number fields, https://arxiv.org/abs/1810.00808
– A. Parusiński, G. Rond, Multiparameter perturbation theory of matrices and linear operators, https://arxiv.org/abs/1807.04242
– R. Oliveira Targino, Lipschitz geometry at infinity of complex plane algebraic curves, (2019), (Renato Oliveira Targino a est étudiant doctorant ; sa thèse est en codirection entre Anne Pichon et Alexandre Fernandes). https://arxiv.org/abs/1906.05569
– S. Trivedi, D. Trotman, Deformation retracts to intersections of Whitney stratifications, 2019 (submitted).