Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Groupe de travail

Asymptotic expansion of eigenvalues for the MIT bag model




Date(s) : 27/04/2017   iCal
15h30 - 16h30

In this talk we present some spectral asymptotic results of the MIT bag model. This model is the Dirac operator, −iα · ∇ + mβ, defined on a smooth and bounded domain of R3 , Ω, with certain boundary conditions. Specifically, −iβ(α · n)ψ = ψ must hold at the boundary of Ω, where n is the outward normal vector and ψ ∈ H 1 (Ω, C^4 ). This model was developed to get a better understanding of the phenomenons involved in the quark-gluon confinement. We study the self-adjointness of the operator and describe the limiting behavior of the eigenvalues of the MIT bag Dirac operator as the mass m tends to ±∞. This is a joint work with N. Arrizabalaga and N. Raymond.

Webpage« >Webpage

Catégories


Secured By miniOrange