Completeness of rank one perturbations of normal operators with lacunary spectrum
Anton Baranov
Saint Petersburg State University, Russia
https://scholar.google.ru/citations?user=GQkG27YAAAAJ&hl=ru
Date(s) : 06/06/2016 iCal
10h00 - 11h00
Suppose A is a compact normal operator on a Hilbert space H with certain lacunarity condition on the spectrum (which means, in particular, that its eigenvaluesgo to zero exponentially fast), and let L be its rank one perturbation. We show that either infinitely many moment equalities hold or the linear span of root vectors of L, corresponding to non-zero eigenvalues, is of finite codimension in H. In contrast to classical results, we do not assume the perturbation to be weak.
https://arxiv.org/abs/1510.02717
Catégories