dPAω: a dependently-typed classical arithmetic in finite types which proves dependent choices
Hugo Herbelin
INRIA, Rocquencourt-Paris
http://pauillac.inria.fr/~herbelin/
Date(s) : 03/03/2016 iCal
11h00 - 12h00
We extend classical arithmetic in finite types with an intuitionistically-restricted form of strong projection of existential quantification. In this system, by turning countable universal quantification into an infinite tuple, we can give a proof of the axiom of dependent choices.
All constructions of the system are computational, hence providing with a proof-as-program interpretation of dPAω. The presence of infinite tuples requires however to rely on a lazy evaluation strategy.
Catégories