Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Séminaire

Formes d’enlacement et chirurgies borroméennes

Delphine Moussard
Université de Pise
https://sites.google.com/site/pagewebdedelphinemoussard/

Date(s) : 09/02/2015   iCal
14h00 - 15h00

Un résultat dû à Matveev stipule que deux variétés fermées connexes orientées de dimension 3 s’obtiennent l’une de l’autre par chirurgies borroméennes si et seulement si leurs premiers groupes d’homologie et leurs formes d’enlacement sont isomorphes. Une chirurgie borroméenne induit en fait un isomorphisme canonique entre les premiers groupes d’homologie des variétés concernées, qui préserve la forme d’enlacement. On verra que tout tel isomorphisme est induit par une suite de chirurgies borroméennes. Cela nous amènera à établir que toute présentation finie carrée symétrique du premier groupe d’homologie d’une variété fermée connexe orientée de dimension 3, qui encode la forme d’enlacement, est induite par une présentation de chirurgie de la variété.

Catégories


Secured By miniOrange