Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Obstructions to Anosov diffeomorphisms




Date(s) : 01/07/2016   iCal
11h00 - 12h00

A diffeomorphism f of a closed Riemannian manifold M is Anosov if TM has a splitting as a Whitney sum of two df-invariant subbundles, and df acts expansively on one of the subbundles, and contractively on the other.
The only known examples of manifolds supporting an Anosov map are (certain) infranilmanifolds — prompting Smale to ask whether manifolds having an Anosov diffeomorphism necessarily have to be infranil. In this talk, I will survey the known obstructions to having an Anosov diffeomorphism. I will also outline some recent work with Andrey Gogolev showing that products of certain aspherical manifolds with nilmanifolds do not support Anosov diffeomorphisms.

https://math.osu.edu/people/lafont.1

Catégories Pas de Catégories


Secured By miniOrange