Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

On Lipschitz rigidity of complex analytic sets




Date(s) : 04/04/2019   iCal
14h00 - 15h00

In this talk, we will prove that any complex analytic set in $\mathbb{C}^n$ which is Lipschitz normally embedded at infinity and has tangent cone at infinity that is a linear subspace of $\mathbb{C}^n$ must be an affine linear subspace of $\mathbb{C}^n$ itself. No restrictions on the singular set, dimension nor codimension are required. In particular, any complex algebraic set in $\mathbb{C}^n$ which is Lipschitz regular at infinity is an affine linear subspace.
This is a joint work with Alexandre Fernandes.

http://www.bcamath.org/en/people/esampaio

Catégories Pas de Catégories


Secured By miniOrange