Quantization of the heat flow on polarized Kähler manifolds
Julien Meyer
Université Libre de Bruxelles
https://www.researchgate.net/profile/Julien_Meyer5
Date(s) : 17/11/2014 iCal
14h00 - 15h00
Using the geometry of the space of all Kähler metrics in a fixed cohomology class we first show how to construct a sequence of operators which can be thought of as quantized versions of the Laplacian. For each one of these operators we consider the associated « heat flow » and show that these flows converge back to the genuine heat flow in the semi-classical limit. The proof relies on results about the asymptotics of Toepliz operators due to Ma and Marinescu.
Catégories