Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Séminaire

Severi Varieties of nodal curves on surfaces




Date(s) : 07/02/2017   iCal
11h00 - 12h00

Given any algebraic projective curve $C$, it can be realized as a plane curve with at most nodes. For this reason, starting with F. Enriques and F. Severi in the first couple of decades of last century, algebraic geometers started getting interested in families of plane curves with a fixed degree $d$ and a given number $\delta$ of nodes. In more recent times these families have been baptized \emph{Severi varieties} and suitable versions of them have been considered also on surfaces other than the projective plane, especially on $K3$ surfaces The study of Severi varieties, in the plane as well as in other surfaces, is a milestone in algebraic geometry, has several interesting and attractive aspects and is quite active nowadays, especially concerning enumerative questions. In this talk I will try to summarize some of the main known results on the subject and explain a variety of different techniques introduced for studying them. Time permitting, I will in particular mention some work in progress with Th. Dedieu on the subject, based on degeneration techniques.

https://www.mat.uniroma2.it/~cilibert/

Catégories


Secured By miniOrange