Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Séminaire

Surfaces de la classe VII_0 de Kodaira contenant un cycle de courbes rationnelles et lissage de singularités




Date(s) : 25/04/2017   iCal
11h00 - 12h00

Soit S une surface de la classe VII_0 de Kodaira avec second nombre de Betti >0 contenant un cycle de courbes rationnelles.
La matrice d’intersection étant définie négative, un théorème de Donaldson montre qu’il existe des classes de cohomologie e_i, 0\le i\le b_2(S)-1 qui trivialisent la forme d’intersection sur H^2(S,Z)/Tors.
D’autre part, il existe un théorème classique de dualité « étrange’’ entre les deux cycles de courbes rationnelles d’une surface d’Inoue-Hirzebruch.
On donnera l’expression des courbes rationnelles du cycle en terme des classes e_i et on généralisera à toutes les surfaces de Kato le théorème de dualité entre le cycle et les arbres d’une surface de Kato.
Dans le cas d’un cycle C tel que C^2<0, on peut contracter le cycle en une singularité normale. Cette singularité est-elle lissable localement et globalement ? Dans le cas lissable global on verra que les surfaces obtenues qui n’ont aucune fonction méromorphe non constante se déforment en surfaces projectives. Webpage« >Webpage

Catégories


Secured By miniOrange