Diffusion limits of the Boltzmann multi-species equation through perturbation of hypocoercivity
Andrea Bondesan
Paris Descartes University
https://helios2.mi.parisdescartes.fr/~abondesan/
Date(s) : 28/02/2023 iCal
11h00 - 12h00
We discuss the rigorous derivation of hydrodynamic limits of the Boltzmann multi-species equation, when the Mach and Knudsen numbers vanish at the same rate. Solutions of the kinetic equations are constructed as fluctuations around local non-equilibrium Maxwellians, whose physical observables solve the limiting macroscopic model of interest. A general hypocoercive formalism is used to develop a uniform (with respect to the small diffusion parameter) Cauchy theory for this perturbative setting and an application to derive the Maxwell-Stefan cross-diffusion system is presented.
https://andreabondesan.wordpress.com/
Emplacement
I2M Chateau-Gombert - CMI, Salle de Séminaire R164 (1er étage)
Catégories