Théorèmes maximaux de type Hardy-Littlewood avec bornes indépendantes de la dimension
Luc Deléaval
LAMA, Université Gustave Eiffel, Champs-sur-Marne
https://perso.math.u-pem.fr/deleaval.luc/
Date(s) : 22/01/2018 iCal
10h00 - 11h00
In this talk, Fefferman-Stein inequalities in 𝐿𝑝(ℝ𝑑;ℓ𝑞) with bounds independent of the dimension 𝑑 are proved, for all 1<𝑝,𝑞<+∞. This result generalizes in a vector-valued setting the famous one by Stein for the standard Hardy-Littlewood maximal operator. We then extend our result by replacing ℓ𝑞 with an arbitrary UMD Banach lattice. Finally, we prove similar dimensionless inequalities in the setting of the Grushin operators.
Hardy-Littlewood maximal theorems with dimension independent bounds
Dimension free bounds for the vector-valued Hardy-Littlewood maximal operator
https://hal.archives-ouvertes.fr/hal-01494518/
Catégories