Singulier
- Accueil
- Groupes de Travail de l’I2M
- Singulier
					Responsables				
				
					Groupe				
				
					Fréquence				
				Hebdomadaire
					Jour-Horaires				
				Jeudi, 11h-12h
					Lieu				
				FRUMAM, St Charles (accès)
					Réservation salle				
				
					Contacts				
				- andre-ricardo.belotto-da-silva_at_univ-amu.fr
- anne.pichon_at_univ-amu.fr
Le GdT Singulier a été créé pour discuter des développements en théorie des singularités.
Les prochains groupes de travail
 
		
		
	Linearization of transseries and transserial maps in a neighborhood of a singular point
Jean-Philippe Rolin
			It is known since Schröder (1873) that in order to study the iterations of a function in the neighborhood of a fixed point (which can [...]
		
		
	 
		
		
	Bruce-Roberts numbers and the relative Saito's theorem
Maria Aparecida Soares Ruas
			I will extend the notions of Milnor and Tjurina numbers of functions to the framework of Bruce-Roberts numbers, that is, to pairs formed by the [...]
		
		
	 
		
		
	Surface singularities and planar contact structures
Marco Golla
			Planar contact 3-manifolds, those supported by an open book with genus-0 pages, are fairly special. The goal of the talk is to show that the [...]
		
		
	 
		
		
	Efroymson's Approximation Theorem for globally subanalytic functions
Anna Valette
			Efroymson's Approximation Theorem asserts that if f is a continuous semialgebraic mapping on a C^infinity semialgebraic submanifold M of ℝⁿ and if e : M→ℝ [...]
		
		
	 
		
		
	Preordered groups and valued fields
Julie Decaup
			In this talk, I will begin defining a valuation on a field. We will see that this defines a preorder on a group, and we [...]
		
		
	 
		
		
	Non-archimedean analogue of Wilkie's conjecture and point counting, from Pfaffian over subanalytic to Hensel minimal
Raf Cluckers
			Point counting on definable sets in non-archimedean settings has many faces. (All mimicking some aspects of point counting in o-minimal settings.) For sets living in [...]
		
		
	 
		
		
	Lipschitz normal embedded surfaces & polar exploration
Lorenzo Fantini
			Lipschitz geometry is a branch of singularity theory that studies a complex analytic germ (X,0) in (C^n,0) by equipping it with either one of two [...]
		
		
	 
		
		
	Boundary of the Milnor fiber of a non-isolated Newton non degenerate surface singularity
Octave Curmi
			Milnor fibers play a crucial role in the study of the topology of a singularity of surface. They correspond to the different possible smoothings of [...]
		
		
	 
		
		
	Lipschitz Normally Embedding and Moderately Discontinuous Homology
Xuan Viet Nhan Nguyen
			In [1] J. Bobadilla et al introduced a homology called Moderately Discontinuous homology (MD-homology) in order to capture the homology of a given germ after [...]
		
		
	 
		
		
	On zeta functions, weighted blow-ups and some applications for quasi-homogeneous surface singularities
Juan Viu-Sos
			The Denef-Loeser topological and motivic zeta functions are analytic invariants of holomorphic map germs $f:{\mathbb C}^n\to {\mathbb C}$, which are usually computed from embedded resolutions [...]
		
		
	 
		
		
	Cᵐ solutions of semialgebraic equations and the Whitney extension problem
Jean-Baptiste Campesato
			We address the question of whether geometric conditions on the given data can be preserved by a solution in (1) the Whitney extension problem, which [...]
		
		
	 
		
		
	Measuring the local non-convexity of real algebraic plane curves
Miruna-Stefana Sorea
			We study the real Milnor fibre of real bivariate polynomial functions vanishing at the origin, with an isolated local minimum at this point. We work [...]
		
		
	 
		
		
	Théorèmes de prolongement de Whitney pour les courbes dans les variétés sous-riemanniennes
Ludovic Sacchelli
			On discute l’existence de prolongements réguliers de courbes satisfaisant une condition de compatibilité avec les développements de Taylor vis à vis d’une structure métrique sous-riemannienne. [...]
		
		
	 
		
		
	Décomposition chimique de fibres de Milnor
Patrick Popescu-Pampu
			Chimie des fibres de Milnor Les singularités en épissure sont la classe la plus vaste que l'on connaisse de singularités intersections complètes de surfaces complexes [...]
		
		
	 
		
		
	Invariants of generic normal surface singularities
András Némethi
			We fix a topological type of a complex analytic normal surface singularity, and will assume that the corresponding link (as oriented compact 3-manifold) is a [...]
		
		
	 
		
		
	Invariants de Vitushkin motiviques
Georges Comte
				
				14/01/2021    
			
			
				
				14h00 - 15h00
			
			
			
			
			
			
			
			
			
			
			
			
		
			J'expliquerai comment dans un travail en commun avec Immanuel Halupczok. Nous définissons des invariants en géométrie non archimédienne, qui sont des substituts dans ce contexte [...]
		
		
	
				17
				Déc
			
		A Morse-Bott type complex for intersection homology and the Bismut-Zhang torsion
Ursula Ludwig
			The famous Morse-Thom-Smale complex on a smooth compact manifold M associated to a smooth real valued Morse function f is a complex generated by the [...]
		
		
	 
		
		
	The Brasselet-Schurmann-Yokura conjecture on L-classes of singular varieties
Javier Fernandez de Bobadilla
				
				10/12/2020    
			
			
				
				14h00 - 16h30
			
			
			
			
			
			
			
			
			
			
			
			
		
			I will prove the Brasselet-Schurmann-Yokura conjecture, which predicts the equality between the Hodge L-class and the Goresky-MacPherson L-class for compact complex algebraic varieties that are [...]
		
		
	 
		
		
	Order of a real polynomial on generic arcs in a semialgebraic set
Maria Michalska
				
				03/12/2020    
			
			
				
				14h00 - 16h30
			
			
			
			
			
			
			
			
			
			
			
			
		
			We will present some results on the value of order of real rational functions on generic arcs lying in a semialgebraic set, in particular for [...]
		
		
	 
		
		
	Opérateurs différentiels et résolution de singularités
Daniel Panazzolo
				
				19/11/2020    
			
			
				
				14h00 - 16h30
			
			
			
			
			
			
			
			
			
			
			
			
		
			Je présenterai un résultat de résolution de singularités pour des opérateurs différentiels d'ordre arbitraire définis dans une variété de dimension deux. Differential operators and resolution [...]
		
		
	 
				


