Singulier
- Accueil
- Groupes de Travail de l’I2M
- Singulier
Responsables
Groupe
Fréquence
Hebdomadaire
Jour-Horaires
Jeudi, 11h-12h
Lieu
FRUMAM, St Charles (accès)
Réservation salle
Contacts
- andre-ricardo.belotto-da-silva_at_univ-amu.fr
- anne.pichon_at_univ-amu.fr
Le GdT Singulier a été créé pour discuter des développements en théorie des singularités.
Les prochains groupes de travail

Linearization of transseries and transserial maps in a neighborhood of a singular point
Jean-Philippe Rolin
It is known since Schröder (1873) that in order to study the iterations of a function in the neighborhood of a fixed point (which can [...]

Bruce-Roberts numbers and the relative Saito's theorem
Maria Aparecida Soares Ruas
I will extend the notions of Milnor and Tjurina numbers of functions to the framework of Bruce-Roberts numbers, that is, to pairs formed by the [...]

Surface singularities and planar contact structures
Marco Golla
Planar contact 3-manifolds, those supported by an open book with genus-0 pages, are fairly special. The goal of the talk is to show that the [...]

Efroymson's Approximation Theorem for globally subanalytic functions
Anna Valette
Efroymson's Approximation Theorem asserts that if f is a continuous semialgebraic mapping on a C^infinity semialgebraic submanifold M of ℝⁿ and if e : M→ℝ [...]

Preordered groups and valued fields
Julie Decaup
In this talk, I will begin defining a valuation on a field. We will see that this defines a preorder on a group, and we [...]

Non-archimedean analogue of Wilkie's conjecture and point counting, from Pfaffian over subanalytic to Hensel minimal
Raf Cluckers
Point counting on definable sets in non-archimedean settings has many faces. (All mimicking some aspects of point counting in o-minimal settings.) For sets living in [...]

Lipschitz normal embedded surfaces & polar exploration
Lorenzo Fantini
Lipschitz geometry is a branch of singularity theory that studies a complex analytic germ (X,0) in (C^n,0) by equipping it with either one of two [...]

Boundary of the Milnor fiber of a non-isolated Newton non degenerate surface singularity
Octave Curmi
Milnor fibers play a crucial role in the study of the topology of a singularity of surface. They correspond to the different possible smoothings of [...]

Lipschitz Normally Embedding and Moderately Discontinuous Homology
Xuan Viet Nhan Nguyen
In [1] J. Bobadilla et al introduced a homology called Moderately Discontinuous homology (MD-homology) in order to capture the homology of a given germ after [...]

On zeta functions, weighted blow-ups and some applications for quasi-homogeneous surface singularities
Juan Viu-Sos
The Denef-Loeser topological and motivic zeta functions are analytic invariants of holomorphic map germs $f:{\mathbb C}^n\to {\mathbb C}$, which are usually computed from embedded resolutions [...]

Cᵐ solutions of semialgebraic equations and the Whitney extension problem
Jean-Baptiste Campesato
We address the question of whether geometric conditions on the given data can be preserved by a solution in (1) the Whitney extension problem, which [...]

Measuring the local non-convexity of real algebraic plane curves
Miruna-Stefana Sorea
We study the real Milnor fibre of real bivariate polynomial functions vanishing at the origin, with an isolated local minimum at this point. We work [...]

Théorèmes de prolongement de Whitney pour les courbes dans les variétés sous-riemanniennes
Ludovic Sacchelli
On discute l’existence de prolongements réguliers de courbes satisfaisant une condition de compatibilité avec les développements de Taylor vis à vis d’une structure métrique sous-riemannienne. [...]

Décomposition chimique de fibres de Milnor
Patrick Popescu-Pampu
Chimie des fibres de Milnor Les singularités en épissure sont la classe la plus vaste que l'on connaisse de singularités intersections complètes de surfaces complexes [...]

Invariants of generic normal surface singularities
András Némethi
We fix a topological type of a complex analytic normal surface singularity, and will assume that the corresponding link (as oriented compact 3-manifold) is a [...]

Invariants de Vitushkin motiviques
Georges Comte
14/01/2021
14h00 - 15h00
J'expliquerai comment dans un travail en commun avec Immanuel Halupczok. Nous définissons des invariants en géométrie non archimédienne, qui sont des substituts dans ce contexte [...]
17
Déc
A Morse-Bott type complex for intersection homology and the Bismut-Zhang torsion
Ursula Ludwig
The famous Morse-Thom-Smale complex on a smooth compact manifold M associated to a smooth real valued Morse function f is a complex generated by the [...]

The Brasselet-Schurmann-Yokura conjecture on L-classes of singular varieties
Javier Fernandez de Bobadilla
10/12/2020
14h00 - 16h30
I will prove the Brasselet-Schurmann-Yokura conjecture, which predicts the equality between the Hodge L-class and the Goresky-MacPherson L-class for compact complex algebraic varieties that are [...]

Order of a real polynomial on generic arcs in a semialgebraic set
Maria Michalska
03/12/2020
14h00 - 16h30
We will present some results on the value of order of real rational functions on generic arcs lying in a semialgebraic set, in particular for [...]

Opérateurs différentiels et résolution de singularités
Daniel Panazzolo
19/11/2020
14h00 - 16h30
Je présenterai un résultat de résolution de singularités pour des opérateurs différentiels d'ordre arbitraire définis dans une variété de dimension deux. Differential operators and resolution [...]