Singulier
- Accueil
- Groupes de Travail de l’I2M
- Singulier
Responsables
Groupe
Fréquence
Hebdomadaire
Jour-Horaires
Jeudi, 11h-12h
Lieu
FRUMAM, St Charles (accès)
Réservation salle
Contacts
- andre-ricardo.belotto-da-silva_at_univ-amu.fr
- anne.pichon_at_univ-amu.fr
Le GdT Singulier a été créé pour discuter des développements en théorie des singularités.
Les prochains groupes de travail
Linearization of transseries and transserial maps in a neighborhood of a singular point
Jean-Philippe Rolin (Institut de Mathématiques de Bourgogne, Dijon)
It is known since Schröder (1873) that in order to study the iterations of a function in the neighborhood of a fixed point (which can [...]
Bruce-Roberts numbers and the relative Saito's theorem
Maria Aparecida Soares Ruas (Universidade de São Paulo)
I will extend the notions of Milnor and Tjurina numbers of functions to the framework of Bruce-Roberts numbers, that is, to pairs formed by the [...]
Surface singularities and planar contact structures
Marco Golla (Laboratoire des mathématiques Jean Leray, Université de Nantes)
Planar contact 3-manifolds, those supported by an open book with genus-0 pages, are fairly special. The goal of the talk is to show that the [...]
Efroymson's Approximation Theorem for globally subanalytic functions
Anna Valette (Jagiellonian University, Kraków, Poland)
Efroymson's Approximation Theorem asserts that if f is a continuous semialgebraic mapping on a C^infinity semialgebraic submanifold M of ℝⁿ and if e : M→ℝ [...]
Preordered groups and valued fields
Julie Decaup (IMT, Toulouse & UNAM, Cuernavaca)
In this talk, I will begin defining a valuation on a field. We will see that this defines a preorder on a group, and we [...]
Non-archimedean analogue of Wilkie's conjecture and point counting, from Pfaffian over subanalytic to Hensel minimal
Raf Cluckers (University of Lille, France and KU Leuven, Belgium)
Point counting on definable sets in non-archimedean settings has many faces. (All mimicking some aspects of point counting in o-minimal settings.) For sets living in [...]
Lipschitz normal embedded surfaces & polar exploration
Lorenzo Fantini (Goethe-Universität Frankfurt, Germany)
Lipschitz geometry is a branch of singularity theory that studies a complex analytic germ (X,0) in (C^n,0) by equipping it with either one of two [...]
Boundary of the Milnor fiber of a non-isolated Newton non degenerate surface singularity
Octave Curmi (Institut de Mathématiques Alfréd Rényi, Budapest)
Milnor fibers play a crucial role in the study of the topology of a singularity of surface. They correspond to the different possible smoothings of [...]
Lipschitz Normally Embedding and Moderately Discontinuous Homology
Xuan Viet Nhan Nguyen (Basque Center for Applied Mathematics (BCAM), Spain)
In [1] J. Bobadilla et al introduced a homology called Moderately Discontinuous homology (MD-homology) in order to capture the homology of a given germ after [...]
On zeta functions, weighted blow-ups and some applications for quasi-homogeneous surface singularities
Juan Viu-Sos (Universidad Politécnica de Madrid)
The Denef-Loeser topological and motivic zeta functions are analytic invariants of holomorphic map germs $f:{\mathbb C}^n\to {\mathbb C}$, which are usually computed from embedded resolutions [...]
Cᵐ solutions of semialgebraic equations and the Whitney extension problem
Jean-Baptiste Campesato (University of Toronto)
We address the question of whether geometric conditions on the given data can be preserved by a solution in (1) the Whitney extension problem, which [...]
Measuring the local non-convexity of real algebraic plane curves
Miruna-Stefana Sorea (Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy)
We study the real Milnor fibre of real bivariate polynomial functions vanishing at the origin, with an isolated local minimum at this point. We work [...]
Théorèmes de prolongement de Whitney pour les courbes dans les variétés sous-riemanniennes
Ludovic Sacchelli (LAGEPP, Université Lyon 1)
On discute l’existence de prolongements réguliers de courbes satisfaisant une condition de compatibilité avec les développements de Taylor vis à vis d’une structure métrique sous-riemannienne. [...]
Décomposition chimique de fibres de Milnor
Patrick Popescu-Pampu (LPP, Université de Lille)
Chimie des fibres de Milnor Les singularités en épissure sont la classe la plus vaste que l'on connaisse de singularités intersections complètes de surfaces complexes [...]
Invariants of generic normal surface singularities
András Némethi (University of Budapest (ELTE), Hungary)
We fix a topological type of a complex analytic normal surface singularity, and will assume that the corresponding link (as oriented compact 3-manifold) is a [...]
Invariants de Vitushkin motiviques
Georges Comte (LAMA, Université Savoie Mont Blanc, Le Bourget-du-Lac)
14/01/2021
14h00 - 15h00
J'expliquerai comment dans un travail en commun avec Immanuel Halupczok. Nous définissons des invariants en géométrie non archimédienne, qui sont des substituts dans ce contexte [...]
17
Déc
A Morse-Bott type complex for intersection homology and the Bismut-Zhang torsion
Ursula Ludwig (University of Duisburg-Essen, Germany)
The famous Morse-Thom-Smale complex on a smooth compact manifold M associated to a smooth real valued Morse function f is a complex generated by the [...]
The Brasselet-Schurmann-Yokura conjecture on L-classes of singular varieties
Javier Fernandez de Bobadilla (Ikerbasque Research, Bilbao)
10/12/2020
14h00 - 16h30
I will prove the Brasselet-Schurmann-Yokura conjecture, which predicts the equality between the Hodge L-class and the Goresky-MacPherson L-class for compact complex algebraic varieties that are [...]
Order of a real polynomial on generic arcs in a semialgebraic set
Maria Michalska (Univeristy of Lodz, Poland)
03/12/2020
14h00 - 16h30
We will present some results on the value of order of real rational functions on generic arcs lying in a semialgebraic set, in particular for [...]
Opérateurs différentiels et résolution de singularités
Daniel Panazzolo (IRIMAS, Université de Haute-Alsace, Mulhouse)
19/11/2020
14h00 - 16h30
Je présenterai un résultat de résolution de singularités pour des opérateurs différentiels d'ordre arbitraire définis dans une variété de dimension deux. Differential operators and resolution [...]



