Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Groupe

AGT

Fréquence

Hebdomadaire

Jour-Horaires

Jeudi, 11h-12h

Lieu

FRUMAM, St Charles (accès)

Contacts
  • andre-ricardo.belotto-da-silva_at_univ-amu.fr
  • anne.pichon_at_univ-amu.fr

Le GdT Singulier a été créé pour discuter des développements en théorie des singularités.

Les prochains groupes de travail

Linearization of transseries and transserial maps in a neighborhood of a singular point

Linearization of transseries and transserial maps in a neighborhood of a singular point

Jean-Philippe Rolin

06/05/2021    
14h00 - 15h00
It is known since Schröder (1873) that in order to study the iterations of a function in the neighborhood of a fixed point (which can [...]
Bruce-Roberts numbers and the relative Saito's theorem

Bruce-Roberts numbers and the relative Saito's theorem

Maria Aparecida Soares Ruas

29/04/2021    
14h00 - 15h00
I will extend the notions of Milnor and Tjurina numbers of functions to the framework of Bruce-Roberts numbers, that is, to pairs formed by the [...]
Surface singularities and planar contact structures

Surface singularities and planar contact structures

Marco Golla

22/04/2021    
14h00 - 15h00
Planar contact 3-manifolds, those supported by an open book with genus-0 pages, are fairly special. The goal of the talk is to show that the [...]
Efroymson's Approximation Theorem for globally subanalytic  functions

Efroymson's Approximation Theorem for globally subanalytic functions

Anna Valette

15/04/2021    
14h00 - 15h00
Efroymson's Approximation Theorem asserts that if f is a continuous semialgebraic mapping on a C^infinity semialgebraic submanifold M of ℝⁿ and if e : M→ℝ [...]
Preordered groups and valued fields

Preordered groups and valued fields

Julie Decaup

08/04/2021    
14h00 - 15h00
In this talk, I will begin defining a valuation on a field. We will see that this defines a preorder on a group, and we [...]
Non-archimedean analogue of Wilkie's conjecture and point counting, from Pfaffian over subanalytic to Hensel minimal

Non-archimedean analogue of Wilkie's conjecture and point counting, from Pfaffian over subanalytic to Hensel minimal

Raf Cluckers

01/04/2021    
14h00 - 15h00
Point counting on definable sets in non-archimedean settings has many faces. (All mimicking some aspects of point counting in o-minimal settings.) For sets living in [...]
Lipschitz normal embedded surfaces & polar exploration

Lipschitz normal embedded surfaces & polar exploration

Lorenzo Fantini

25/03/2021    
14h00 - 15h00
Lipschitz geometry is a branch of singularity theory that studies a complex analytic germ (X,0) in (C^n,0) by equipping it with either one of two [...]
Boundary of the Milnor fiber of a non-isolated Newton non degenerate surface singularity

Boundary of the Milnor fiber of a non-isolated Newton non degenerate surface singularity

Octave Curmi

18/03/2021    
14h00 - 15h00
Milnor fibers play a crucial role in the study of the topology of a singularity of surface. They correspond to the different possible smoothings of [...]
Lipschitz Normally Embedding and Moderately Discontinuous Homology

Lipschitz Normally Embedding and Moderately Discontinuous Homology

Xuan Viet Nhan Nguyen

11/03/2021    
14h00 - 15h00
In [1] J. Bobadilla et al introduced a homology called Moderately Discontinuous homology (MD-homology) in order to capture the homology of a given germ after [...]
On zeta functions, weighted blow-ups and some applications for quasi-homogeneous surface singularities

On zeta functions, weighted blow-ups and some applications for quasi-homogeneous surface singularities

Juan Viu-Sos

25/02/2021    
14h00 - 15h00
The Denef-Loeser topological and motivic zeta functions are analytic invariants of holomorphic map germs $f:{\mathbb C}^n\to {\mathbb C}$, which are usually computed from embedded resolutions [...]
Cᵐ solutions of semialgebraic equations and the Whitney extension problem

Cᵐ solutions of semialgebraic equations and the Whitney extension problem

Jean-Baptiste Campesato

18/02/2021    
14h00 - 15h00
We address the question of whether geometric conditions on the given data can be preserved by a solution in (1) the Whitney extension problem, which [...]
Measuring the local non-convexity of real algebraic plane curves

Measuring the local non-convexity of real algebraic plane curves

Miruna-Stefana Sorea

11/02/2021    
14h00 - 15h00
We study the real Milnor fibre of real bivariate polynomial functions vanishing at the origin, with an isolated local minimum at this point. We work [...]
Théorèmes de prolongement de Whitney pour les courbes dans les variétés sous-riemanniennes

Théorèmes de prolongement de Whitney pour les courbes dans les variétés sous-riemanniennes

Ludovic Sacchelli

04/02/2021    
14h00 - 15h00
On discute l’existence de prolongements réguliers de courbes satisfaisant une condition de compatibilité avec les développements de Taylor vis à vis d’une structure métrique sous-riemannienne. [...]
Décomposition chimique de fibres de Milnor

Décomposition chimique de fibres de Milnor

Patrick Popescu-Pampu

28/01/2021    
14h00 - 15h00
Chimie des fibres de Milnor Les singularités en épissure sont la classe la plus vaste que l'on connaisse de singularités intersections complètes de surfaces complexes [...]
Invariants of generic normal surface singularities

Invariants of generic normal surface singularities

András Némethi

21/01/2021    
14h00 - 15h00
We fix a topological type of a complex analytic normal surface singularity, and will assume that the corresponding link (as oriented compact 3-manifold) is a [...]
Invariants de Vitushkin motiviques

Invariants de Vitushkin motiviques

Georges Comte

J'expliquerai comment dans un travail en commun avec Immanuel Halupczok. Nous définissons des invariants en géométrie non archimédienne, qui sont des substituts dans ce contexte [...]
17 Déc

A Morse-Bott type complex for intersection homology and the Bismut-Zhang torsion

Ursula Ludwig

17/12/2020    
14h00 - 16h30
The famous Morse-Thom-Smale complex on a smooth compact manifold M associated to a smooth real valued Morse function f is a complex generated by the [...]
The Brasselet-Schurmann-Yokura conjecture on L-classes of singular varieties

The Brasselet-Schurmann-Yokura conjecture on L-classes of singular varieties

Javier Fernandez de Bobadilla

I will prove the Brasselet-Schurmann-Yokura conjecture, which predicts the equality between the Hodge L-class and the Goresky-MacPherson L-class for compact complex algebraic varieties that are [...]
Order of a real polynomial on generic arcs in a semialgebraic set

Order of a real polynomial on generic arcs in a semialgebraic set

Maria Michalska

We will present some results on the value of order of real rational functions on generic arcs lying in a semialgebraic set, in particular for [...]
Opérateurs différentiels et résolution de singularités

Opérateurs différentiels et résolution de singularités

Daniel Panazzolo

Je présenterai un résultat de résolution de singularités pour des opérateurs différentiels d'ordre arbitraire définis dans une variété de dimension deux. Differential operators and resolution [...]
1 2 3 4
Secured By miniOrange