Utilisateur·rice
- Accueil
- Utilisateur·rice
Alexandre • Boritchev
Professeur (PR) • Affiliation : Aix-Marseille Université (AMU)
Site : Saint-Charles • Bureau : E-09 • Etage du bureau : 1 (bât. 8) •
…
Groupe(s) scientifiques(s) de l'utilisateur :
Thématiques scientifiques :
- Analyse et géométrie complexe
- Analyse harmonique
- Théorie des opérateurs
Publications HAL
2022/06 – Sharp well-posedness and blowup results for parabolic systems of the Keller-Segel type2022/03 – Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions
2022/01 Journal of Dynamics and Differential Equations – Sharp Sobolev estimates for concentration of solutions to an aggregation-diffusion equation
2021/01 Journal of Differential Equations – Concentration phenomena in a diffusive aggregation model
2019/10 – Riemann’s non-differentiable function is intermittent
2018/03 Stochastics and Partial Differential Equations: Analysis and Computations – Exponential convergence to the stationary measure for a class of 1D Lagrangian systems with random forcing
2018/01 Discrete & Continuous Dynamical Systems – A – Decaying turbulence for the fractional subcritical Burgers equation
2017/07 – Exponential convergence to the stationary measure and hyperbolicity of the minimisers for random Lagrangian systems
2016/01 Communications in Mathematical Physics – Multidimensional Potential Burgers Turbulence
2014/12 Russian Mathematical Surveys – Turbulence for the generalised Burgers equation
2014/01 Archive for Rational Mechanics and Analysis – Decaying Turbulence in the Generalised Burgers Equation
2013/05 – Sharp Estimates for Turbulence in White-Forced Generalised Burgers Equation
2013/03 – Decaying Turbulence in Generalised Burgers Equation
2013/01 Geometric And Functional Analysis – Sharp Estimates for Turbulence in White-Forced Generalised Burgers Equation
2012/10 – Equation de Burgers g en eralis ée a force al éatoire et a viscosit é petite
2012/10 – Note on Decaying Turbulence in a Generalised Burgers Equation
2011/09 – Turbulence de Burgers en 1D : un cas modèle pour la théorie de Kolmogorov