Trou spectral dans les systèmes dynamiques aléatoires du cercle
Dominique Malicet
LAMA, Université Gustave Eiffel, Champs-sur-Marne
https://perso.crans.org/mdominique/
Date(s) : 27/11/2017 iCal
10h00 - 11h00
Spectral hole in random dynamic systems of the circle
Given a finite set of diffeomorphisms of the circle {f1,…,fm}, we are interested in the sequences (xn)nℕ of the circle defined by the recurrence relation xn+1 = fin(xn), where the in are chosen randomly in {1,…, m} independently according to the same Bernoulli law with parameter (p1,…,pm). The associated transfer operator P is defined on the space of functions ϕ : S1 →
by Pϕ = ∑i=1mpiϕ ∘fi. We show under certain assumptions that on certain spaces of Hölderian functions, P admits a spectral hole, and we deduce consequences on the distribution of (xn)n
ℕ (central limit theorem with remainder, theorem of large deviations).
https://perso.crans.org/mdominique/simultaneous-conjugation.pdf
Catégories